Поскольку у параллелограмма АВСД противоположные стороны параллельны и равны, противоположные углы равны, значит АД=ВС и АД║ВС АВ=СД и АВ║СД ∠А=∠С ∠В=∠Д
Рассмотрим треугольники АМД и ВСК. АМ=СК - это дано по условию задания. АД=ВС - это мы выяснили выше ∠А=∠С - это мы выяснили выше А эти равности дают нам право утверждать, что треугольник АМД=треугольнику ВСК. А это означает, что МД=ВК. Также из равности треугольников можно утверждать, что ∠АМД=∠СКВ. ∠МДА=∠КВС.
Сумма мер двух смежных углов равна 180°, значит ∠ВМД+∠АМД=180°, отсюда ∠ВМД=180° - ∠АМД ∠ДКБ+∠СКВ=180°, отсюда ∠ДКБ=180° - ∠СКВ
Поскольку ∠АМД=∠СКВ, а значит ∠ВМД=∠ДКБ
Поскольку ∠МДА=∠КВС и ∠АВС=∠АДС, тогда ∠АВК=∠СДМ, так как ∠АВС=∠АВК+∠КВС, отсюда ∠АВК=∠АВС-∠КВС ∠АДС=∠МДА+∠СДМ, отсюда ∠СДМ=∠АДС-∠МДА
АВ=АМ+ВМ, отсюда ВМ=АВ-АМ СД=СК+КД, отсюда КД=СД-СК Поскольку АВ=СД, а АМ=СК, значит ВМ=КД. Поскольку АВ║СД, то и ВМ║КД.
Получаеться, мы выяснили, что МД=ВК ∠ВМД=∠ДКБ ∠АВК=∠СДМ ВМ=КД ВМ║КД.
Из всего этого мы можем сделать вывод, что МВКД - это параллелограмм, поскольку у него противоположные стороны и углы равны.
Диагонали равнобедренной трапеции равны, поэтому oc: ao=ob: do=2: 5 и, так как ∢boc=∢aod, то δaod∼δboc (по второму признаку подобия треугольников: две стороны одного треугольника пропорциональны двум сторонам другого и углы, лежащие между этими сторонами равны). 2. так как δaod∼δboc, то adbc=aooc=52. из этого соотношения выражаем и вычисляем большее основание трапеции ad: ad=5×bc2=5×122=30 см. 3. вычисляем ae: ae=ad−bc2=30−122=182=9 см. 4. так как δabe — прямоугольный треугольник, то находим боковую сторону ab по теореме пифагора: ab=be2+ae2−−−−−−−−−−√=122+92−−−−−−−√=144+81−−−−−−−√=225−−−√=15 см. 5. находим периметр равнобедренной трапеции abcd: p(abcd)= 2×ab+ad+bc=2×15+30+12=72 см.
х-у=38
х+у=180
х=38+у
38+у+у=180
2у=142
у=71
180-71=109
ответ: 109 и 71