Объяснение:
1. EK ll AC => соответственные углы равны - <KAC=<EKA. AE=EK => △AEK равнобедренный, <EAK=<EKA. => <KAC=<EAK, значит AK - биссектриса <BAC.
Но AB=AC, значит △АВС - равнобедренный. А значит биссектриса, проведённая к основанию является также медианой. => BK=KC
2. AB ll DC => накрест лежащие углы равны - <CDE=<ABC. В прямоугольном треугольнике △CED <CDE=90-<CED=90-50=40. => <ABC=40°
3. BC ll EF => <AEF=<ACB=90° как соответственные. <KEA=<AEF-<KEF=90-30=60°
усть скорость первого автомобилиста равна x км/ч, а длина пути равна s км [величина s введена для удобства, она потом сократится]. тогда скорость второго автомобилиста на 1-й половине пути равна x-15 км/ч. время, за которое 1-й автомобилист проехал весь путь равно t1 = s/x.второй автомобилист проехал 1-ю половину пути за время t2_1 = (s/2): (x-15) = s/(2*(x- а вторую половину пути – за время (s/2)/90 =s/180; время всюду измеряется в часах. по условию, t1 = t2_1+t2_2. получаем уравнение:
s/x = s/(2*(x-15)) + s/180
сократим (как и было обещано j ) на s и решим уравнение.
1/x = 1/(2*(x-15)) + 1/180 (2)
2*(x-15)*180 = 180*x + 2*(x-15)*x
(x-15)*180 = 90*x + (x-15)*x
180*x – 15*180 = 90*x + x2 – 15*x
180*x – 15*180 = 90*x + x2 – 15*x
x2 + (90-15 – 180)*x +15*180 = 0
x2 — 105*x +15*180 = 0
решим полученное квадратное уравнение.
d = 1052 – 4*15*180 = (7*15)2 – 4*15*(15*12) =
= 152*(72 – 4*12) = 152*(49 – 48) = 152
следовательно, уравнение (2) имеет 2 корня:
x1 = (105+15)/2 = 60; x2 = (105-15)/2 = 45
так как x> 54, то x=60
ответ 60
находим периметр:
70·4=280 или 70+70+70+70=280
ответ:280