Отрезки ас и вд пересекаются в точке о ,причём ао 15 см, во 6см ,со 5см,до 18см а) докажите ,что четырехугольник авсд трапеция б)найдите отношение площадей треугольников аод и вос
Т.к. у ромба все стороны равны, а периметр это сумма всех сторон, то одна сторона ромба будет равна 48:4, т.е. 12. Площадь ромба равна стороне ромба в квадрате, умноженной на синус угла, т.е. 120 = 12^2sin угла Синус угла равен площадь робма разделить на квадрат стороны, т.е. 120:12^2, т.е. 120:144 По условию угол ромба, который надо найти - острый. Это означает что cos угла =корень(1-sin^2 A)=корень(1-(120\144)^2)= (1-120:144) (1+120:144) = (1-5:6) (1+5:6) = (1:6)* (11:6) = 11:36 По сновному тригонометрическому свойству находим тангенс tg угла=sin угла\cos, т.е. угол=120\144\(11\36)=30:11
Таблицы не вижу. Признаки равенства треугольников таковы:
1. Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. 2. Если сторона и два прилежащих угла одного треугольника равны соответствующей стороне и прилегающим углам другого треугольника, то такие треугольники равны. 3. Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны. Отсюда, кстати, вытекают следствия для равенства прямоугольных треугольников.
1. Если два катета одного прямоугольного треугольника равны катетам другого треугольника то они равны. 2. Если катет и острый угол одного треугольника равны катету и острому углу другого треугольника, то они равны. 3. Если гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого треугольника то они равны. 4. Если катет и гипотенуза одного треугольника равны катету и гипотенузе другого треугольника то они равны. 5. Если гипотенуза одного равнобедренного треугольника равна гипотенузе другого равнобедренного треугольника, то они равны. И т.д.