TMNK- равнобедренная трапеция вписана окружность. Площадь трапеции 125. Хорда, параллельная основаниям , проведена в точки касания боковых сторон и равна 8. Найдите площадь круга.
Объяснение:
S(круга)= π R². R-?
1) Пусть О-центр вписанной окружности, ОА=ОР=ОY=R.
S (трапеции) =1/2*h*(a+b) , h=2R , (a+b)/2- длина средней линии.
2) Проведем среднюю линию НС. Она будет параллельна АВ, и пройдет через центр О (по свойству противоположных сторон описанного четырехугольника)
3) Т.к АВ параллельна основаниям , то ∠АХО=90° , тк радиус проведенный в точку касания перпендикулярен касательной.
ΔАХО-прямоугольный , cos∠ОАХ=АХ/АО , cos∠ОАХ=4/R
4) ∠ОАХ=∠АОН , тк АХ|| НО , АО-секущая.
ΔАОН-прямоугольный, cos∠ОАН=АО/НО, 4/R= R/НО ,4HO=R², 2(2HO)=R², HC=R²/2,
5) S (трапеции) =1/2 *(a+b) *h или 125= R²/2*2R , 125=R ³, R=5
S(круга)= 25π ед².
1) квадрат и треугольник взаимно перпендикулярны, значит, ВС перпендикулярна плоскости треугольника АМВ, следовательно ВС перпендикулярна любой прямой лежащей в плоскости АМВ, а значит, перпендикулярна и АМ.
2)проведём высоту МК в треугольнике АМВ. Так как треугольник равнобедренный, то высота является и медианой, поэтому АК=КВ=4:2=2
из прямоугольного треугольника МКВ МК^2=MB^2-BK^2=(2 корень из6)^2-4=4*6-4=20
из прямоугольного треугольника КВС КС^2=KB^2+BC^2=2^2+4^2=4+16=20
треугольник МКС равнобедренный значит угол КМС=углу МСК, угол МКС=90градусов так как МК перпендикулярна к плоскости квадрата, поэтому угол между МС и плоскостью квадрата равен 90градусов :2=45 градусов
Рассмотрим тр-ник АОВ ОМ - высота на сторону АВ. ОМ=r=24 cм.
АО:ВО=АС:ВД=0.75=3:4.
Пусть одна часть в этом отношении равна х, тогда АО=3х, ВО=4х.
По т. Пифагора АВ²=АО²+ВО²=9х²+16х²=25х².
Высота в прямоугольном тр-ке равна: h=ab/с,
ОМ=АО·ВО/АВ=3х·4х/5х=12х/5,
12х/5=24,
х=10.
АВ=5х=50 см.
Площадь ромба: S=a·H, где Н - высота ромба, Н=2r=2ОМ=48 см.
S=АВ·2ОМ=50·48=2400 см².