Смотрим образовавшийся прямоугольный (т.к. медиана в равностороннем треугольнике является и высотой, и биссектрисой) треугольник: Т.к. она является и биссектрисой, то угол поделится пополам, т.е. будет равен = 30. Дальше воспользуемся тригонометрией, а именно косинусом (напомню, косинус - отношение прилежащего катета к гипотенузе): cos 30=√3/2 √3/2=9√3/x √3х=18√3 х=18 (см) - сторона треугольника. Если есть желание, можешь расковырять через теорему Пифагора, обозначив второй катет за х, а гипотенузу за 2х. ответ получится абсолютно тот же.
3 см Так как треугольник равносторонний, то все его стороны равны. АВ=ВС=АС=2√3Биссектриса в равностороннем треугольнике является медианой и высотой. Медиана ВН (она же биссектриса, она же высота) делит треугольник АВС на два треугольника. B AHC Рассмотрим треугольник АВН: Т. к ВН-биссектриса, то угол АВН=30° (т. к в равностороннем треугольнике все углы равны 60°).Треугольник АВН - прямоугольный (т. к ВН еще и высота). По св-ву прямоугольного треугольника, один из углов которого равен 30°:АВ - гипотенуза треугольника АВН. АН - катет, лежащий против угла в 30°.Значит, АН=1/2*АВАН=1/2*2√3АН=√3Теперь, по теореме Пифагора найдем сторону ВН. АВ2=ВН2+АН2(2√3)2=х2+(√3)2(√12)2=х2+312=х2+3 ==> х2=9 х=3ВН=3 см. ответ: ВН=3 см
Дана трапеция АВСД, ВС = 4 см, АД = 6 см. ВД = 5 см, АС = 6 см.
Проведём отрезок СЕ, равный и параллельный диагонали ВД.
Получим треугольник АСЕ со сторонами 5, 6 и 10 см.
cos (AEC) = (100 + 36 - 25)/(2*10*6) = 111/120 = 37/40.
Угол АЕС = arc cos(37/40) = 22,33165°.
Так как угол АЕС равен углу АДВ, то в равнобедренном треугольнике АВД острый угол трапеции ДАВ равен:
∠ДАВ = (180 - 22,33165)/2 = 78,83418°.
Находим сторону трапеции СД = √(36 + 16 - 2*6*4*(37/40)) = √7,6.
Теперь можно определить угол СДА.
cos(CDA) = (36 + 7.6 - 25)/(2*6*√7,6) = 18,6/(12√7,6) = 1,55√7,6 ≈ 0,562244.
Угол (СДА) = arc cos(1,55√7,6) ≈ 0,9737 радиан или 55,7889 градуса.