Дано : ABCD - параллелограмм Пусть ∠A =∠C _острые углы ; AB =BD = 8 ; AC =8√2 .
S(ABCD) -?
Пусть O точка пересечения диагоналей AC и BD. S(ABCD) =4*S(∆ ABO) . * * *т.к. диагонали параллелограмма в точке пересечения делятся пополам* * * Треугольник ABO определен однозначно по трем сторонам и его площадь можно вычислить разными например, по формуле Герона: S(∆ABO) = √p( p-a)(p-b)(p-c) , где p=(a +b+c)/2 _полупериметр . * * *a =AO = AC/2 =4√2 , b=BO =BD/2 =4, c =AB=8 , p =6+2√2 * * * S(∆ABO)=√(6+2√2)(6-2√2)(2√2+2)(2√2-2)=4√(3+√2)(3-√2)(√2+1)(√2+1)=4√7. S(ABCD) =4*S(∆ ABO) =4*4√7=16√7 кв.ед.
Второй
Для параллелограмма : 2(AB² +AD²) =AC²+BD² ; 2(8² +BC²) = (8√2)² +8² ⇒ AD =4√2 . S(ABCD) =AD*h,а высоту h удобно определить из равнобедренного ΔABD . h = √(AB² -(AD/2)²) =√(8² -(2√2)²) =2√2 *√7.
Соединим точку О с точками А, В, С . Получим два треугольника ОАВ и ОВС. Они равнобедренные оба, т.к. стороны ОА, ОВ, ОС являются радиусами окружности. Рассмотрим треугольник ОАВ, раз в нем угол ОАВ равен 43 градусам, то угол АВО тоже будет равен 43 градусам, как углы при основании равнобедренного треугольника. Определим угол ОВС в треугольнике другом. Раз угол АВС равен 75градусам из условия задачи, то угол ОВС будет равен 75-43=32 градуса. А искомый угол ВСО будет равен углу ОВС как угол при основании равнобедренного треугольника ., т.е .искомый угол ВСО=ОВС=32 градуса. ответ: угол ВСО=32 градуса
ответ: 1
Объяснение:
Площадь поверхности куба - это сумма площадей шести одинаковых граней-квадратов:
Sпов = 6 · Sгр
Площадь квадрата можно найти как площадь ромба, как половину произведения диагоналей. А так как в квадрате диагонали равны, то
Sгр = d²/2, где d - диагональ квадрата.
6 · d²/2 = 3
3d² = 3
d² = 1
d = 1