прямоугольный треугольник: гипотенузы R= 2,6 см - радиус шара катет h =2, 4см -расстояние от центра шара до центра сечения катет r - радиус сечения, найти по теореме Пифагора: R²=r²+h² 2,6²=r²+2,4². r²=1. r=1 см C=2πr. C=2π*1=2*3,14*1 C≈6,28 см
1) В прямоугольном треугольнике АВС из вершины прямого угла С проведем к гипотенузе AB отрезок CO так, чтобы CO=OA.
2) ∆ AOC — равнобедренный с основанием AC (по определению равнобедренного треугольника).
Значит, у него углы при основании равны:∠OAC=∠OCA=α.
3) Так как сумма острых углов прямоугольного треугольника равна 90º, то в треугольнике ABC ∠B=90º- α.
4) Так как ∠BCA=90º (по условию), то ∠BCO=90º- ∠OCA=90º-α.
5) Рассмотрим треугольник BOC.
∠BCO=90º-α, ∠B=90º- α, следовательно, ∠BCO=∠B.
Значит, треугольник BOC — равнобедренный с основанием BC (по признаку равнобедренного треугольника).
Отсюда BO=CO.
6) Так как CO=OA (по построению) и BO=CO (по доказанному), то CO=OA=BO, AB=OA+BO=2∙OA=2∙CO.
Таким образом, точка O — середина гипотенузы AB, отрезок CO соединяет вершину треугольника с серединой противолежащей стороны, значит, CO — медиана, проведенная к гипотенузе, и она равна половине гипотенузы
Начерти тетраэдр SABC. Проведи высоту SO. Точка О является центром вписанной и описанной окружности, поскольку в тетраэдре все основания - правильные треугольники. Тебе нужно найти высоту тетраэдра. ЕЕ найдем из треугольника SOB, где ОВ - радиус описанной окружности. И находится он по формуле R = a/√3, где а - сторона треугольника. ОВ = 8/√3 см. По теореме пифагора высота OF = √ (64 - 64/3) = 8√2/√3 см Ортогональной проекцией боковой грани является равнобедреннй треугольник, основание которого 8 см, а высота равна высоте тетраэдра. Поэтому чертишь отрезок 8 см и со средины отрезка проводишь перпендикуляр равный высоте тетраэдра, которую мы вычислили. Соединяешь вершины и почучаешь ортогональную проекцию. ЕЕ площадь: S = 1/2 * 8 * 8√2/√3 = 32√2/√3 см^2 Если не нравятся корни в ответах, то калькулятор, хотя обычно ответ принято оставлять в такой форме.
прямоугольный треугольник:
гипотенузы R= 2,6 см - радиус шара
катет h =2, 4см -расстояние от центра шара до центра сечения
катет r - радиус сечения, найти по теореме Пифагора:
R²=r²+h²
2,6²=r²+2,4². r²=1. r=1 см
C=2πr. C=2π*1=2*3,14*1
C≈6,28 см