Я даже не знаю как мне обьяснить пошагово решение этой задачи,но я попробую. Потому что метод довольно кондовый. Обозначенные углы равны как внутренние накрест лежащие и углы бьющиеся бессектрисой. Откуда треугольники ABF и CND равнобедренные. То бессектрисы AT и DR медианы и высоты.(BT=TF) (CR=RN) Треугольники BSC и NSF подобны по 2 углам. BS/SF=CS/SN поиграв с отношениями получим что ТS/SF=RS/SN То треугольники TSR и NSF подобны по 2 пропорциональным сторонам и равным вертикальным углам между ними. То углы крест накрест равны. То TR параллельно NF. ТR параллельно QP (QTRP-трапеция). Известным фактом является,что если диагонали трапеции состовляют с ее боковыми сторонами равные углы (в данном случае прямые) То она равнобочная. ТО есть угол P=Q то из соответственных углов Ф=Z ,то углы D=A. То наша трапеция равнобочная ЧТД
Весь "секрет" в том биссектрисы отсекают от трапеции равнобедренные треугольники, потому что биссектриса с боковой стороной и с обоими основаниями образует одинаковые углы. То есть меньшее основание равно сумме боковых сторон, то есть 13 + 20 = 33; Если теперь провести высоты из концов мньшего основания, то трапеция разобьётся на прямоугольник со сторонами 33 и 12, и два треугольника. Один имеет в качестве гипотенузы боковую сторону 13, и высоту трапеции 12, как один из катетов, откуда второй катет равен 5, аналогично во втором треугольнике гипотенуза 20, один из катетов 12, то есть второй катет 16. То есть проекции боковых сторон на большее основание равны 5 и 16. Ясно, что большее основание равно 33 + 5 + 16 = 54; собственно, уже все найдено. Площадь трапеции (33 + 54)*12/2 = 522;