М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
132427
132427
18.12.2022 20:59 •  Геометрия

Площадь осевого сечения цилиндра равна 156 см^2. найдите высоту цилиндра, если радиус его основания равен 6 см.

👇
Ответ:
evasaidova91
evasaidova91
18.12.2022
Осевое сечение цилиндра прямоугольник. Sпрям=a*b, где а -ширина, а b- длина.
a = 6*2= 12
b= 156/12 = 13
ответ: 13
4,5(68 оценок)
Открыть все ответы
Ответ:
Случай 1 : Площадь бо́льшего треугольника равна 8 (ед²).Отношение сходственных сторон подобных треугольников равно коэффициенту подобия.

Пусть S₁ - это площадь бо́льшего треугольника, а S₂ - площадь меньшего треугольника.

Пусть k > 1 (это значит, что в числителе будет стоять бо́льший треугольник).

k = \frac{5}{2} = 2,5.

Площади подобных треугольников относятся как квадрат коэффициента подобия.

Отсюда -

\frac{S_{1} }{S_{2} } = k^{2} \\\\\frac{8}{S_{2} } = 2,5^{2} \\\\\frac{8}{S_{2} } = 6,25\\\\S_{2} = \frac{8}{6,25} \\\\\boxed{S_{2} = 1,28}

1,28 (ед²).

- - -

Случай 2 - Площадь меньшего треугольника равна 8 (ед²).

В этом случае наоборот k < 1 (в числителе будет стоять меньший треугольник).

S₁ - площадь бо́льшего треугольника, S₂ - площадь меньшего треугольника

Тогда -

k = \frac{2}{5} = 0,4.

\frac{S_{2} }{S_{1} } = k^{2}\\\\\frac{8 }{S_{1} } = 0,4^{2}\\\\\frac{8 }{S_{1} } = 0,16\\\\S_{1} = \frac{8}{0,16}\\\\\boxed{S_{1} = 50}

50 (ед²).

4,8(24 оценок)
Ответ:
ЛехаФомин
ЛехаФомин
18.12.2022
В обеих задачах один из углов в треугольнике = 120°. Этот угол не может быть углом при основании равнобедренного Δ, так как эти углы должны быть равными, и их сумма будет равна 240°, что больше, чем 180°.
 Значит угол в 120° - это угол при вершине.
Углы при основании будут равны (180°-120°):3=30°
1) Опустим высоту из вершины А на бок. сторону ВС (АС - основание равнобедренного ΔАВС), получим точку Н. Она будет лежать на продолжении стороны ВС, т.к. ∠В=120° - тупой.
Рассм. ΔАНС: ∠АНС=90°, ∠АСН=30°  ⇒  АН - катет, лежащий против угла в 30°, равен половине гипотенузы. Гипотенузой является АС=18 см.
АН=18:2=9 (см)

2) В этой задаче всё аналогично, чертёж такой же, только известно не АС, а АВ=ВС=14.
Чтобы найти высоту АН, как катет, лежащий против угла в 30° в ΔАНС, надо вычислить длину основания АС в равнобедренном ΔАВС
 ( АС является   гипотенузой в ΔАНС) .
Теорема косинусов:
АС²=АВ²+ВС²-2·АВ·ВС·сos120°=14²+14²-2·14·14·cos(90°+30°)=
       =2·14²-2·14²·(-cos30°)=2·14²·(1+√3/2)=2·14²·(2+√2)/2=14²·(2+√3)

AC=\sqrt{14^2(2+\sqrt3)}=14\cdot \sqrt{2+\sqrt3}\\\\AH=\frac{AC}{2}=7\cdot \sqrt{2+\sqrt3}
4,4(57 оценок)
Новые ответы от MOGZ: Геометрия
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ