ответ:
по следствию 2 из аксиомы 1 стереометрии:
через две пересекающиеся прямые проходит плоскость, и притом только одна.
прямые l и m пересекаются, следовательно, лежат в одной плоскости а₁в₁в₂а₂.
из свойства параллельных плоскостей:
линии пересечения двух параллельных плоскостей третьей плоскостью параллельны.
отрезки а₁в₁ и а₂в₂ параллельны, т.к. лежат в параллельных плоскостях α и β и являются линиями пересечения этих плоскостей с плоскостью а₁в₁в₂а₂..
в ∆ а₁ов₁ и ∆ а₁ов₁ углы при о равны как вертикальные, и углы при а₁в₁ и а₂в₂ равны как накрестлежащие при пересечении параллельных прямых секущими l и m
следовательно,
треугольники ∆ а₁ов₁ и ∆ а₂ов₂ подобны по равенству углов.
тогда отношение а₁в₁: а₂в₂=3: 4.
12: а₂в₂=3/4
3 а₂в₂=48 см
а₂в₂=16 см
проводим касательную, проводим радиусы в точки касания, и соединяем центры. кроме того, из центра меньшей окружности проводим пепендикуляр к радиусу большей окружности, проведенном у точку касания. этот перпендикуляр равен общей касательной (там прямоугольник: получился прямоугольный треугольник со сторонами d = корень(80) - линия центров, это гипотенуза треугольника, (r - r), и второй катет в качестве искомого расстояния.
x^2 = d^2 - (r - r)^2;
по условию r - r = 4; x^2 = 80 - 16 = 64; x = 8;
Пусть АВ=х, тогда АД=2х.
Так как трапеция равнобокая, АМ=(АД-ВС)/2=(2х-х)/2=х/2.
В прямоугольном тр-ке катет АМ вдвое меньше гипотенузы АВ, значит ∠АВМ=30°.
АВ=ВМ/cos30=2/√3=2√3/3.
АД=2АВ=4√3/3.
Площадь трапеции: S=(АД+ВС)·ВМ/2,
S=(4√3+2√3)·1/6=√3 (ед²) - это ответ.