М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
murahkina2006
murahkina2006
12.10.2020 06:32 •  Геометрия

Углы треугольника, большая сторона которого равна 36, относятся на как 1: 2: 3. найдите меньшую сторон​

👇
Открыть все ответы
Ответ:
Tim4ik2281
Tim4ik2281
12.10.2020

Обязательно смотрим рисунок.

 

И примем во внимание, что получающиеся трапеции подобны не исходной.

 

Если трапеции ALFD и LBCF подобны, то a/LF = LF/b.

Отсюда LF = √(ab).

Таким образом, отрезок разбивающий трапецию на две подобные трапеции, имеет длину равную среднему геометрическому длин оснований.

---

Делим трапецию:


1 отрезок между основаниями исходной:
х²=2*8=16
х=√16=4


Второй отрезок между первым и основанием исходной трапеции 
у²=4*8=32
у =√32=4√2


Третий отрезок - идет под меньшим основанием 
z²=2*4=8
z=2√2

---------------------------

Отрезки в рисунке идут в таком порядке 

z, x, y 

 

---------------

 

Коэффициент подобия между этими четырьмя трапециями попарно ( смежными) равен

4:2√2=2:√2=2√2:√2·√2=2√2:2=√2

k=√2


Площади подобных фигур относяся как квадрат коэффициента их подобия.

Для этих трапеций это

(√2)²=2
Площадь второй по величине относится к нижней -большей- как 1:2=1/2
Третьей ко второй 1/2:2=1/4
и последней
1/8
сложим площади
1/2+1/4+1/8 =( 4+2+1)/8=7/8 

 7/8 < 1 
Площадь самой большой из этих четырёх трапеций больше суммы площадей остальных трёх

 


трапеция с основаниями 2 и 8 разрезана тремя отрезками, которые || основаниям, на четыре подобных ме
4,7(34 оценок)
Ответ:
ivan497
ivan497
12.10.2020

6 ед.

Объяснение:

В правильной усеченной пирамиде в основаниях лежат правильные многоугольники, стороны которых соответственно равны между собой. Боковые грани такой пирамиды - равные между собой равнобокие трапеции. Радиусы окружностей, вписанных в основания, проведенные в точки касания сторон оснований с соответственной окружностью Н и Н1, перпендикулярны к сторонам оснований по свойству радиусов, проведенных в точки касания.

Проведем перпендикуляр из точки касания Н1М верхнего основания на нижнее основание. Тогда отрезок Н1Н перпендикулярен стороне основания АВ по теореме о трех перпендикулярах, то есть является искомой высотой боковой грани.

В прямоугольном треугольнике НН1М угол ∠НН1М = 30° по сумме острых углов. Следовательно, НН1 = 2·НМ по свойству катета, лежащего против угла 30°.

НМ = ОН - О1Н1 = 8-5 = 3 ед.

Высота боковой грани НН1 = 6 ед.

4,5(75 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ