Так как сумма углов любого треугольника равна 180 градусов, то внешний угол будет равен 236°-180°=56°. Это так. Значит ВНУТРЕННИЙ угол треугольника, смежный с внешним, будет равен 180°-56°=124°. Это ТУПОЙ угол, и значит это угол при ВЕРШИНЕ равнобедренного треугольника. Тогда углы при основании равны (180°-124°):2=28°. ответ: углы треугольника равны 124°,28° и 28°.
Или так: Данный нам внешний угол - смежный с тупым внутренним(124°), то есть с углом при вершине, противоположной основанию. Внешний угол равен сумме двух внутренних, не смежных с ним (равные углы при основании). Значит углы при основании равны 56°:2=28°.
AB =BC ; ∠A= ∠C =α =45° , OH =d =3 см ; ∠SAO=∠SBO=∠SCO=β=30°. --- V - ?
V =(1/3)Sосн *H =(1/3)S(ABC)*SO.
Если все боковые ребра (SA,SB ,SC) пирамиды образуют с плоскостью основания ABC равные углы (в данном случае β), то высота проходит через центр окружности описанной около основания. HO - серединный перпендикуляр стороны AB: OH⊥AB,AH =BH =AB/2; ||OH =d ||.
∠B =180°-2α ; R =d/sin(∠B/2) = d/sin(90°-α)=d/cosα. SO= R*tqβ =(d/cosα)*tqβ = (tqβ /cosα)* d . AB =2*OH*tqα=2d*tqα. S(ABC) =(1/2)*AB²*sin∠B = (1/2)*4d²*tq²α*sin(180°-2α)= 2d²*tq²α*sin2α= 2d²*tq²α*2sinα*cosα= 4d²*sin³α/cosα.
V =(1/3)S(ABC)*SO. V=(1/3)*4d²*sin³α/cosα*(tqβ /cosα)*d =(4/3)*sinα*tq²α**tqβ*d³.
Eсли α =45°, β=30°,d=3 см ,то : V=(4/3)*(√2/2)*(1²)*(1/√3)*3³=6√6.
Дано :
а ║ b.
с - секущая.
∠1 = 4*∠2.
Найти :
∠1 = ?
∠2 = ?
∠1 и ∠2 - односторонние.
При пересечении двух параллельных прямых секущей сумма односторонних углов равна 180°.Пусть ∠1 = х, тогда ∠2 = 4х.
Тогда по выше сказанному -
∠1 + ∠2 = 180°
х + 4х = 180°
5х = 180°
х = 36°.
∠1 = х = 36°
∠2 = 4х = 4*36° = 144°.
36°, 144°.