дать подбробный ответ со всем расчетами и объяснениями. в правильной четырёхугольной призме abcda1b1c1d1 ребро aa1 = 8, а диагональ bd1 = 17. найдите площадь сечения призмы плоскостью, проходящей через точки a, a1 и c.
Плоскость сечения будет проходить через вершины А, А1, С и С1 т.к. АА1║СС1 и АС║А1С1. В правильной четырёхугольной призме диагонали ВД1 и АС1 равны. Поскольку в основании квадрат, то АС=ВД; все боковые рёбра призмы равны, значит в прямоугольных треугольниках АСС1 и ВДД1 катеты равны, следовательно равны и гипотенузы АС1 и ВД1. В тр-ке АСС1 АС²=АС1²-СС1²=17²-8²=225, АС=15. АСС1А1 - прямоугольник, площадь которого: S=АС·АА1=15·8=120 (ед²) - такой ответ.
По свойствам углов параллелограма угол ВАД= углу ВСД и равен 30. Сумма углов параллелограмма, прилежащих к одной стороне, равна 180º, значит ВСД+СДА=180, СДА=180-30=150. Теперь находим угол ВДА=150-75(угол ВДС=75, из дано), значит угол ВДА=75 И угол АВД тоже равен 75, так как 180-30-75=75. Значит треугольник АВД и треугольник ВСД равнобедренный с боковыми сторонами АВ и АД, ВСи СД. Сумма длин сторон АВ и АД равна половине периметра, а он равен 40 см., также мы уже знаем, что эти стороны равны, значит АВ=АД=40/2/2=10 см ответ: все стороны параллелограмма по 10 см, а углы 30,150,30,150
Шаг 1. Поставить острие циркуля в вершину угла и на обоих лучах угла отложить равные отрезки (сделать засечки) . Шаг 2. Не меняя раствора циркуля поставить поочередно острие циркуля на засечки, сделанные в шаге 1, и провести дуги, так, чтобы они пересеклись. Шаг 3. Точку пересечения дуг соединить с вершиной угла. Это и будет биссектриса. Объяснение. Если соединить засечки, сделанные на шаге 1 с точкой пересечения дуг, то получится ромб. Диагональ ромба является биссектрисой его противоположных углов.
В правильной четырёхугольной призме диагонали ВД1 и АС1 равны. Поскольку в основании квадрат, то АС=ВД; все боковые рёбра призмы равны, значит в прямоугольных треугольниках АСС1 и ВДД1 катеты равны, следовательно равны и гипотенузы АС1 и ВД1.
В тр-ке АСС1 АС²=АС1²-СС1²=17²-8²=225,
АС=15.
АСС1А1 - прямоугольник, площадь которого:
S=АС·АА1=15·8=120 (ед²) - такой ответ.