Площадь трапеции равна произведению полусуммы оснований на высоту, в данном случае это
(29 + 15) * 15 / 2 = 44 * 15 / 2 = 22 * 15 = 330 сантиметров квадратных
Так как верхнее основание (BC) и боковая сторона (CD) равны, то трапецию можно разделить на треугольник и квадрат. Площадь квадрата равна верхнему основанию трапеции, умноженному на боковую сторону, а площадь треугольника (он будет прямоугольным, так как высота, опущенная из точки B к нижнему основанию перпендикулярна этому основанию) будет равна половине произведения катетов. Катет BH (высота) нам известен, и он равен 15, второй катет мы найдём из разности оснований трапеции 29 - 15 = 14 сантиметров. Площадь треугольника равна 14 * 15 / 2 = 7 * 15 = 105 сантиметров квадратных, а площадь квадрата равна 225 сантиметров квадратных. Сложим вместе площади фигур и получим площадь трапеции, которая равна 105 + 225 = 330 квадратных сантиметров
Post Scriptum - это решение верно, только, если у трапеции сторона CD перпендикулярна нижнему основанию!
1. Расстояние от точки до прямой - это перпендикуляр к прямой. Наклонные к прямой и этот перпендикуляр образуют два прямоугольных треугольника. с гипотенузами, равными 13см и 15см и катетами, равными Х и Х+4. Второй катет - искомое расстояние - общий. Тогда по Пифагору можем написать: 13²-х² = 15²-(х+4)². Отсюда х=5см. Искомое расстояние равно: √(169-25) = 12 см.
2. Так как диагональ АС равнобокой трапеции АВСD образует с боковой стороной CD угол АСD, равный 90°, то большее основание трапеции AD является диаметром описанной окружности и равно 2R. В прямоугольном треугольнике ACD: Sinα = CD/AD => CD=2R*Sinα, а AC=2R*Cosα. Высота трапеции СН - это высота треугольника ACD, опущенная из прямого угла и по свойству этой высоты, равна: АС*СD/AD или СН=4R²Sinα*Cosα/2R = 2RSinα*Cosα. Но по формуле приведения 2Sinα*Cosα =Sin2α. Тогда ответ:
СН = RSin2α.
Радиус описанной окружности равностороннего (правильного) треугольника найдем по формуле:
Высоту пирамиды SO находим по теореме Пифагора:
ответ: