М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MaksStilinski
MaksStilinski
05.11.2020 16:45 •  Геометрия

Точка m равноудалена от всех сторон правильного треугольника abc, сторона которого равна 4 см. расстояние от точки m до плоскости abc равно 2 см. 1)докажите, что плоскость amo перпендикулярна плоскости bmc (o-основание перпендикуляра, опущенного из m на плоскость abc) 2)найдите угол между плоскостью bmc и плоскостью abc. 3)найдите угол между mc и плоскостью abc.

👇
Ответ:
Адамчик11
Адамчик11
05.11.2020

Точка M равноудалена от всех сторон правильного треугольника ABC. Значит, проекции наклонных – расстояний от М до сторон основания, – равны радиусу вписанной в этот треугольник окружности, а все наклонные, соединяющие М и вершины углов основания равны и наклонены к  плоскости АВС  под одинаковым углом. Их проекции равны радиусу описанной вокруг основания окружности.  При этом МО - перпендикулярен плоскости основания и О - центр АВС. 

1) 

Две плоскости перпендикулярны тогда и только тогда, когда одна из них проходит через перпендикуляр к другой плоскости. 

Прямая перпендикулярна плоскости, если она перпендикулярна двум прямым, лежащим в этой плоскости.  

По т. о трех перпендикулярах  СВ перпендикулярен АН и МН, значит, СВ ⊥ плоскости АМН (АМО).

 Плоскость СМВ проходит через  прямую СВ,  перпендикулярную плоскости АМК. Следовательно, плоскости СМВ и АМО (АМН) перпендикулярны, ч.т.д.

2)

Угол между плоскостью ВМС и плоскостью АВС -  двугранный угол между ними. Его величина равна величине линейного угла МНО, образованного при пересечении этих плоскостей  перпендикулярной им плоскостью МНА (её перпендикулярность им доказана выше). 

МО=2.

ОН=r вписанной в АВС окружности. 

r=a/(2√3)=2/√3

tg ∠MHO=MO/OH=2:(2/√3)=√3- это тангенс 60º⇒

Угол между плоскостью ВМС и плоскостью АВС=60º

3)

 Угол между MC и плоскостью ABC также найдем через его тангенс. 

tg ∠MCO=MO/OC

MO=2

CО равно радиусу описанной вокруг правильного треугольника окружности:

OC=R =a/√3=4/√3

tg∠MCO=2:(4/√3)=√3/2= ≈0,866. что по таблице тангенсов является тангенсом угла ≈ 40º54'


Точка m равноудалена от всех сторон правильного треугольника abc, сторона которого равна 4 см. расст
4,4(42 оценок)
Открыть все ответы
Ответ:
глеб380
глеб380
05.11.2020
Дано:

△АВС и △DEF.

AB = DE

BC = EF

∠BAC = ∠EDF

Найти:

дополнительное условие, при котором △АВС = △DEF

Решение:

Обратим внимание, почему изначально △АВС не равен △DEF:

Если две стороны и угол МЕЖДУ ними одного треугольника соответственно равны двум сторонам и углу МЕЖДУ ними другого треугольника, то такие треугольники равны.

К ∠ВАС прилежит только 1 сторона, а именно АВ. А сторона ВС к этому углу вообще никак не относится.

Тоже самое и с ∠EDF: к нему прилежит только сторона DE, а EF к нему вообще никак не относится.

Поэтому эти треугольники с изначальными условиями не равны.

Начнём рассматривать приусловия по порядку:

1. ∠ВАС - острый.

=> ∠EDF тоже острый, так как ∠ВАС = ∠EDF, по условию.

Но это нам ничего не даёт.

Всё по прежнему остаётся на своих местах, то есть мы не сможем доказать равенство этих треугольников.

2. ∠ВАС - прямой.

=> ∠EDF тоже прямой, так как ∠ВАС = ∠EDF, по условию.

И это многое нам даёт.

Во-первых, △АВС и △DEF - прямоугольные.

Рассмотрим эти треугольники:

АВ = DF, по условию.

ВС = EF, по условию.

=> △АВС = △DEF, по катету и гипотенузе

У прямоугольных треугольники с другие признаки равенства.

3. ВАС - тупой.

Мы знаем, что тупоугольный треугольник = 1 тупой угол + 2 острых угла.

Но нас ничего не даёт, для того, чтобы доказать равенство треугольников.

4. ∠ВСА - острый.

Но это нам ничего не даёт, так как ∠ВСА не равен ∠EFD, по условию.

Просто ∠ВСА - острый, а ∠EFD может быть тупым или может даже прямым.

5. ∠ВСА - прямой.

Во-первых, мы не сможем доказать равенство, так как нам не сказано, что ∠ВСА = ∠EFD.

Во-вторых, нам не сказано, что ∠EFD - прямой.

=> ∠EFD совершенно любым.

6. ∠ВСА - тупой.

Но это нам ничего не даёт, так как ∠ВСА не равен ∠EFD, по условию.

Просто ∠ВСА - тупой, а ∠EFD может быть острым или может даже прямым.

7. АВ > ВС.

Это нам, опять же, ничего не даёт.

8. АВ < ВС

АВ < ВС, но это нам ничего не даёт.

Всё по прежнему останется.

ответ: 2).
4,5(10 оценок)
Ответ:
Дано:

△АВС и △DEF.

AB = DE

BC = EF

∠BAC = ∠EDF

Найти:

дополнительное условие, при котором △АВС = △DEF

Решение:

Обратим внимание, почему изначально △АВС не равен △DEF:

Если две стороны и угол МЕЖДУ ними одного треугольника соответственно равны двум сторонам и углу МЕЖДУ ними другого треугольника, то такие треугольники равны.

К ∠ВАС прилежит только 1 сторона, а именно АВ. А сторона ВС к этому углу вообще никак не относится.

Тоже самое и с ∠EDF: к нему прилежит только сторона DE, а EF к нему вообще никак не относится.

Поэтому эти треугольники с изначальными условиями не равны.

Начнём рассматривать приусловия по порядку:

1. ∠ВАС - острый.

=> ∠EDF тоже острый, так как ∠ВАС = ∠EDF, по условию.

Но это нам ничего не даёт.

Всё по прежнему остаётся на своих местах, то есть мы не сможем доказать равенство этих треугольников.

2. ∠ВАС - прямой.

=> ∠EDF тоже прямой, так как ∠ВАС = ∠EDF, по условию.

И это многое нам даёт.

Во-первых, △АВС и △DEF - прямоугольные.

Рассмотрим эти треугольники:

АВ = DF, по условию.

ВС = EF, по условию.

=> △АВС = △DEF, по катету и гипотенузе

У прямоугольных треугольники с другие признаки равенства.

3. ВАС - тупой.

Мы знаем, что тупоугольный треугольник = 1 тупой угол + 2 острых угла.

Но нас ничего не даёт, для того, чтобы доказать равенство треугольников.

4. ∠ВСА - острый.

Но это нам ничего не даёт, так как ∠ВСА не равен ∠EFD, по условию.

Просто ∠ВСА - острый, а ∠EFD может быть тупым или может даже прямым.

5. ∠ВСА - прямой.

Во-первых, мы не сможем доказать равенство, так как нам не сказано, что ∠ВСА = ∠EFD.

Во-вторых, нам не сказано, что ∠EFD - прямой.

=> ∠EFD совершенно любым.

6. ∠ВСА - тупой.

Но это нам ничего не даёт, так как ∠ВСА не равен ∠EFD, по условию.

Просто ∠ВСА - тупой, а ∠EFD может быть острым или может даже прямым.

7. АВ > ВС.

Это нам, опять же, ничего не даёт.

8. АВ < ВС

АВ < ВС, но это нам ничего не даёт.

Всё по прежнему останется.

ответ: 2).
4,8(3 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ