Вчетырёхугольнике abcd проведены биссектриса угла а и биссектриса угла в. биссектриса угла а пересекает сторону вс в точке м, а биссектриса угла в — сторону ad в точке n. известно, что mcdn — параллелограмм. докажите, что abcd — параллелограмм.
Так как MCDN - параллелограмм, то MC║ND, значит АD║BC.
В четырёхугольнике ABMN AN║BM, он как минимум трапеция, значит биссектриса его угла отсекает от противоположной стороны отрезок, равный боковой стороне, а так как биссектрисы являются диагоналями, то все его стороны равны, следовательно ABMN - ромб. В нём АВ║MN, значит АВ║СД. AB║CD, BC║AD ⇒ ABCD - параллелограмм. Доказано.
Соединим точки Е и С. Треугольник ЕСА - равнобедренный, так как АС=АЕ (это дано).Углы при основании ЕС равны между собой, а угол А равен 180° -(В+С) = 116°. Тогда углы АЕС и ЕСА равны (180°-116°):2=32°. Значит угол ЕFA (F- это точка пересечения биссектрисы AD и отрезка ЕС) = 180°-(AEF+EAF) = 180°-(32°+58°)=90°. (угол EAF = 1/2 угла А, т.к. AD - биссектриса. Угол AEF = 32°, как угол при основании ЕС равнобедренного тр-ка ЕАС). Итак, при точке пересечения биссектрисы AD и отрезка ЕС все углы прямые!В равнобедренном треугольнике ЕСА биссектриса AF (отрезок AD) является и медианой и высотой (по свойствам равнобедренного тр-ка) и EF=FC. С другой стороны, по признакам равнобедренности - если EF=FC, то тр-ник EDC, в котором FD является и медианой и высотой, равнобедренный. То есть ED=DC.Углы при основании тр-ка EDC равны угол С - угол ECA = 41°-32° = 9°. Тогда на стороне АB имеем углы АEF,DEF и BED, в сумме равные 180°.из них нам неизвестен только угол BED, который равен 180°-(32°+9°) = 139°.Тогда искомый угол BDE в тр-ке BDE равен 180°-(23°+139°) = 18°.ответ: угол BDE = 18°
Параллелограмм – четырёхугольник, у которого противолежащие стороны попарно параллельны, то есть лежат на параллельных прямых. Противоположные стороны параллелограмма попарно равны. Признаки: 1) Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник будет являться параллелограммом. 2)Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник будет параллелограммом. 3) Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник будет являться параллелограммом. 1 признак: Рассмотрим четырехугольник ABCD. Пусть в нем стороны AB и СD параллельны. И пусть AB=CD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD. Эти треугольники равны между собой по двум сторонам и углу между ними (BD - общая сторона, AB = CD по условию, угол1 = угол2 как накрест лежащие углы при секущей BD параллельных прямых AB и CD.), а следовательно угол3 = угол4.А эти углы будут являться накрест лежащими при пересечении прямых BC и AD секущей BD. Из этого следует что BC и AD параллельны между собой. Имеем, что в четырехугольнике ABCD противоположные стороны попарно параллельны, и, значит, четырехугольник ABCD является параллелограммом.
В четырёхугольнике ABMN AN║BM, он как минимум трапеция, значит биссектриса его угла отсекает от противоположной стороны отрезок, равный боковой стороне, а так как биссектрисы являются диагоналями, то все его стороны равны, следовательно ABMN - ромб. В нём АВ║MN, значит АВ║СД.
AB║CD, BC║AD ⇒ ABCD - параллелограмм.
Доказано.