Еще одно нетривиальное решение. в правильном треугольнике авс проведена биссектриса ак и bl. точка о-точка их пересечения. найдите площадь треугольника lok, если ас=8√3
Смотри рисунок. не будем говорить про банальные вещи - у равностороннего треугольника все стороны равны, все углы =60, медианы , биссектрисы и высоты являются одними и теми же линиями и пересекаются в одной точке. Просто вспомним 1) нахождение площади треугольника = половина произведения сторон на синус угла между ними. В данном случае - стороны равны, угол =60 2) то, что ЛК естественно, средняя линия и равна половине АВ (Л и К -середины соответствующих сторон) 3) то, что площадь АВО равна трети исходного ( все три треугольника, составляющих исходный, равны по ... (например, по трем сторонам - т.к. основания равны, а стороны являются радиусами описанной окружности) 4) площади подобных треугольников пропорциональны квадрату коэфф. подобия ( основания в данном случае различаются в 2 раза , значит и высоты тоже в 2, площадь в 2*2=4 раза)
В соответствии с классическим определением, угол между векторами,отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда - - угол между векторами СА и СВ равен ∠АСВ=90°; - угол между векторами ВА и СА равен ∠САВ=50°; - угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
Дано: δ авс ∠с = 90° ак - биссектр. ак = 18 см км = 9 см найти: ∠акв решение. т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) к на гипотенузу ав и обозначим это расстояние км. рассмотрим полученный δ акм, т.к. ∠амк = 90°,то ак гипотенуза, а км - катет. поскольку, исходя из условия, катет км = 9/18 = 1/2 ак, то ∠кам = 30°. т.к. по условию ак - биссектриса, то ∠сак =∠кам = 30° рассмотрим δакс. по условию ∠аск = 90°; а∠сак = 30°, значит, ∠акс = 180° - 90° - 30° = 60° искомый ∠акв - смежный с ∠акс, значит, ∠акв = 180° - ∠акс = 180° - 60° = 120° ответ: 120° подробнее - на -
не будем говорить про банальные вещи - у равностороннего треугольника все стороны равны, все углы =60, медианы , биссектрисы и высоты являются одними и теми же линиями и пересекаются в одной точке.
Просто вспомним
1) нахождение площади треугольника = половина произведения сторон на синус угла между ними. В данном случае - стороны равны, угол =60
2) то, что ЛК естественно, средняя линия и равна половине АВ (Л и К -середины соответствующих сторон)
3) то, что площадь АВО равна трети исходного ( все три треугольника, составляющих исходный, равны по ... (например, по трем сторонам - т.к. основания равны, а стороны являются радиусами описанной окружности)
4) площади подобных треугольников пропорциональны квадрату коэфф.
подобия ( основания в данном случае различаются в 2 раза , значит и высоты тоже в 2, площадь в 2*2=4 раза)
а теперь решение
8√3*8√3*sin60 /2(площадь исходного) / 3 (площадь желтого) /2² = 4√3
все.