1) По формуле S(∆) = ½*h(a)*a, где а - какая-то сторона ∆ АВС, h(a) - высота, проведенная к этой стороне. Тогда S(∆ ABC) = ½*h(a)*a = ½*11*7 = 77/2 = 38.5 см². ответ: S(∆ ABC) = 38.5 см². 2) Найдём второй катет по теореме Пифагора. Пусть катеты равны a и b, а гипотенуза равна с, причем длины всех сторон положительны. Тогда по теореме Пифагора а² + b² = с², теперь подставим числа: 12² + b² = 13², то есть b² = 13² - 12² = (13 - 12)(13 + 12) = 1*25 = 25. Тогда b = √25 = 5, т.к. длина > 0. Значит, катеты данного прямоугольного ∆ равны 12 и 5 см. Тогда по той же формуле (т.к. катеты в прямоугольном ∆ перпендикулярны, то S(прямоугольного ∆) равна полупроизведению его катетов) S(∆) = ½*h(a)*a = ½*b*a = ½*12*5 = 6*5 = 30 см². ответ: второй катет равен 5 см, S(прямоугольного ∆) = 30 см².
Допустим AB =5 , BC =6 , BM =5 ,( AM =MC , M∈[AC] .
AC - ? Продолжаем медиана и на ней откладываем отрезок MD=BE. Соединяем полученную точку с вершинами. Полученный четырехугольник ABCD параллелограмма. Для параллелограмм верно теорема_сумма квадратов диагоналей равно сумму квадратов сторон .AC²+BD² = 2(AB²+BC²)⇒AC²=2(AB²+BC²) - BD² || BD=2BM=10 || AC² =2(5² +6²) -(2*5)²=22. AC =√22. ответ: √22.