Три стороны одинаковые, AB = BC = CD. Четвертая сторона равна обоим диагоналям, AD = AC = BD. Вот я примерно нарисовал этот 4-угольник. Треугольник ABC равнобедренный с углами y (гамма). Треугольник BCD равнобедренный с углами b (бета). Треугольник ABD равнобедренный с углами a+y (a - альфа). Треугольник ACD равнобедренный с углами a+b. Получаем систему { a + (a + y) + (a + y) = 3a + 2y = 180 (ABD) { a + (a + b) + (a + b) = 3a + 2b = 180 (ACD) { (y + (a+b)) + b + b = a + y + 3b = 180 (BCD) { ((a+y) + b) + y + y = a + b + 3y = 180 (ABC) Из 1 уравнения вычитаем 2 уравнение 2y - 2b = 0 b = y Подставляем { 3a + 2b = 180 { a + 4b = 180 Из 1 уравнения вычитаем 2 уравнение 2a - 2b = 0 a = b То есть все три угла равны друг другу a = b = y 3a + 2a = 5a = 180 a = b = y = 180/5 = 36 градусов. Самый большой угол y + (a+b) = 3a = 3*36 = 108 градусов.
Угол между медианой и высотой равен 7x, а два других угла в тройке при вершине - по 4x. Тогда два других угла треугольника равны 90° - 4x и 90° - 11x; Если обозначить медиану m, а обе половинки стороны, к которой она проведена, буквой c (то есть вся сторона равна 2c), то из теоремы синусов для обоих треугольников, на которые медиана делит исходный треугольник, следует m/c = sin(90° - 4x)/sin(11x) = cos(4x)/sin(11x); m/c = sin(90° - 11x)/sin(4x) = cos(11x)/sin(4x); откуда сразу следует sin(8x) = sin(22x); или sin(7x)*cos(15x) = 0; легко видеть, что по смыслу задачи 7x < 180°; то есть sin(7x) не равен 0; то есть остается cos(15x) =0; опять таки, по смыслу задачи, весь угол при вершине, из которой выходят высота и медиана, как раз и равен 15x; единственное осмысленное решение, таким образом, соответствует случаю, когда этот угол прямой - только в этом случае косинус угла равен 0; более старшие решения геометрически невозможны. отсюда x = 6; и углы треугольника 90; 24; 66;