DOA = 70°. Дано в задаче.
BOC = DOA = 70°. Вертикальные углы равны (1).
DOC = 180° - 70° - 110°. Смежные углы в сумме дают 180° (2).
AOB = DOC = 110°. (1).
ODC = (180° - 110°) / 2 = 35°. Сумма углов треугольника равна 180° (3). Если треугольник равнобедренный, то углы при его основаниях равны (4).
ADO = 90° - 35° = 55°. Два угла составляют прямой угол (5).
OAD = ADO = 55°. (4).
OAB = 90° - 55° = 35°. (5).
OBA = OAB = 35°. (4).
OBC = 90° - 35° = 55°. (5).
OCB = OBC = 55°. (4).
Все остальные углы состоят из других и их можно посчитать по сумме. Например:
DAB = DAO + BAO = 55° + 35° = 90°.
Воспользуемся основной формулой площади треугольника:
Площадь равна произведению стороны и проведенной к ней высоты деленное на два.
Для первой высоты и боковой стороны формула будет выглядеть так:
Для второй высоты и стороны так:
отсюда следует, что и высоты h₁, h₂ равны
.Дан АВС (АВ=ВС) углы А и С равны (свойство р/б), высоты АН и СМ, рассмотрим образованные треугольники АНС и СМА - углы А и С равны , углы АНС и СМА прямые , АС общая сторона - треугольники равны по второму признаку (по стороне и двум прилежащим к ней углам)
В равных треугольниках соответствующие стороны равны отсюда следует,что АН и СМ равны