Найти точки пересечения окружности и прямой, заданных уравнениями
x^2 + y^2 = 1 и y = 3x + 1 . Вложение номер 1
Написать уравнения прямой, проходящей через точки (2 ; 4) и (-2 ; 4,5) .—не знаю
Найти точки пересечения прямых -x + y - 2 = 0 и 6x + 8y +7 = 0. Вложение номер 2
Написать уравнение окружности с центром в точке M(2 ; -1) и радиусом 3. —не знаю
Две стороны треугольника равны 17 см и 25 см. Высота делит третью сторону на отрезки, разность которых равна 12 см. Найти периметр треугольника.
Обозначим часть стороны, которая образована высотой и углом, за х. Тогда вторая часть - 12+х
Составим два уравнения по т Пифагора.
Х^2+h^2=17*17
(12+X)^2 +h^2=25*25
Теперь сделаем из этого одно уравнение
Х^2+25*25-(12+X)^2=17*17
X^2-144-24X-X^2=17^2-25^2
-144-24x=(17-25)(17+25)
144+24x=336
24x=192
x=8
тогда вся сторона у нас равна 2x+12=16+12=28 см
Периметр равен 17+25+28=70см
1) BM≈10
2)cosα=0
Объяснение:
1)Дано трикутник ABC
A(0;-3;-1)
B(-4;0;2)
С(8;3;-7)
BM-медіанна
AC(8-0;3-(-3);-7-(-1)) AC(8;6;-6)
М-середина AC
M(8/2;6/2;-6/2) M(4;3;-3)
BM(4-(-4);3-0;-3-2) BM(8;3;-5)
|BM|=√(8²+3²+(-5)²)=√(64+9+25)≈10
2)M(0;1;-1) B(1;-1;2) C(3;1;0) D(2;1;1)
MD(2-0;1-1;1-(-1)) MD(2;0;2)
BC(3-1;1-(-1);0-2) BC(2;2;-2)
Знайдемо скалярний добуток векторів:
MD·BC=2·2+02+2·(-2)=4+0-4=0
Знайдемо довжини векторів:
|MD|=√(2²+0²+2²)=√(4+0+4)=√8=2√2
|BC|=√(2²+2²+(-2)²)=√(4+4+4)=√12=2√3
Знайдемо кут між векторами:
cosα=
По теореме косинусов BC(В квадра те)=AB(В квадрате) + AC(В квадрате) - 2*AB*AC*COS(Угла между сторонами AB и BC)
Подставляем: BC*BC=4 + 7 - 4 * Корень из 7 * 0,5=11 - 2 * корень из 7
BC=(приблизительно) 2,39
ОТВЕТ: 2,39