так как ES=SF /по условию/
TS-общая, то если бы еще добавить, что
ΔETS и ΔFTS- прямоугольные, можно было бы доказать, что они равны по катету и общей гипотенузе, а из равенства треугольников вытекало бы равенство углов.
∠ETS и ∠FTS, тогда бы
∠ETF=2*34°=68°, т.е было бы доказано, что TS- биссектриса. А так... маловато данных для определения этого угла. Там в Вашей картинке написано черным продедены.. .возможно, конец этого предложения перпендикуляры.. проведены.. или что?)
сторону квадрата можно найти зная его диагональ (сторона равна диагональ /V2) или а-СК/V2 2) диагональ квадрата - бисектриса угла С, а в силу того что треугольник равнобедренный, то и медиана, а то что медиана прямоугольного треугольника проведеная к гипотенузе равна половине гипотенузы - известный факт. Таким образом диагональ квадрата 3D гипотенуза/2 или СК-АВ/2 3) гипотенуза равнобедренного прямоугольного треугольника равна катет*V2 или АВ-АС*V2-BC"V2 Вычисляем: 3 АВ-12 V2 (см) 3+2 > СК-12 /2/2-6V2(см) 3+2+1> а-(6 w2)/(V2)-6 (см)
Без того знака не знаю
ES=SF=> угол ETS=угол STF = 34°
угол ETF = угол ETS + угол STF = 34°+34°=68°