Периметр рівнобедреного трикутника дорівнює 36см а бічна сторона ділиться точкою дотику вписаного кола у відношенні 5: 2 починаючи від вершини трикутника . знайдіть сторони трикутника
Прежде всего разберемся с обозначениями. Пусть катет AB=x см, тогда, исходя из данного соотношения AB/AC=3/7, AC=(7*AB)/3=(7*x)/3 см. Теперь запишем теорему Пифагора: AB²+AC²=BC², BC=√(x²+(49*x²)/9)=√((58*x²)/9) =√(58)* x / 3 см (x и 3 уже не под корнем, мы извлекли корень из x² и 9). Теперь воспользуемся следующей формулой для нахождения высоты AH=(AB*AC)/BC. AH=42, а катеты и гипотенузы мы выразили через x. Получаем: (7*x²/3)/(√(58)*x/3)=42 (заменим деление умножением, перевернув вторую дробь)→(7*x²/3)*(3/(√58)*x)=42 (3 сокращаются, x тоже)→(7*x)/(√58)=42→x=AB=6*(√58) см, отсюда AC=14*(√58) см. Запишем теорему Пифагора для треугольника AHB: AH²+HB²=AB²→42²+HB²=36*58→1764+HB²=2088→HB²=324→HB=18 см. Запишем теорему Пифагора для треугольника AHC: AH²+HC²=AC²→42²+HC²=196*58→1764+HC²=11368→HC²=9604→HC=98 см. ответ: гипотенуза делится на отрезки 18 см и 98 см.
Рассмотрим треугольник АВТ. Угол ТАВ = 30 град. Катет, лежащий против угла 30 град., равен половине гипотенузы, т.е.ВТ = АМ = МВ. Отсюда треуголник МВТ равнобедренный. Поскольку углы при основании равны, а угол АВТ = 60 град, то и угол ВТМ = углу ТМВ = 120 : 2 = 60 град. Значит треуголник МВТ равносторонний. В треуголнике АВС углы при основании равны. Тогда в теуголнике ВСТ угол ТВС = 90 - 30 = 60 град. Треугольники МВТ и NВТ равны, поскольку МВ=ВN, ВТ - общая и углы МВТ и NВТ = 60 град. А значит оба треугольники равносторонние. Отсюда TM + TN = AB = BC