мы знаем, что площадь ромба равна половине произведения его диагоналей.. одна диагональ есть.. нужно найти вторую, мы знаем , что диагонали пересекаются под прямым углом и точка пересевения делит диагонали пополам.. из прямоугольного трегольника находим половину другой диагонали..
169-144=25 и корень из 25 равен 5 . следовательно вторая диагональ равна 10.. ну и находим площадь.. 24*10=240 и пополам 120..
или
диагональ делит диагональ на 2 равные части, значит 24:2=12
дальше по теореме пифагора: 13 в квадрате= 12 в квадрате + х в квадрате
169=144+х в квадрате
х в квадрате=25
х1=5; х2= -5, что не удовлетворяет условию задачи
х - это у нас половина второй диагонали, х=5, значит вторая диагональ равна 10
S ромба = 1/2 а*б, следовательно S ромба = 1/2 (24*10) = 1/2 * 240 = 120
ответ: S ромба = 120
основание ABCD - параллелограмм ;
AB =CD =3 см , BC =AD =7 см , BD =6 см ;
SO ⊥ (ABCD) ,SO =H =4 см ,O - точка пересечения диагоналей .
------
SA =SC -? , SB=SD -?
---
Известно: AC²+BD² = 2(AB²+BC²)
⇒AC =√(2(AB²+BC²) - BD²) =√(2(3²+7²) -6²) =4√5 (см).
Из ΔAOS по теореме Пифагора :
SA =√(AO²+SO²) =√((AC/2)²+SO²)=√(2√5)²+4²) =6 (см).
Аналогично из ΔBOS:
SB =√(BO²+SO²) =√((BD/2)²+SO²)=√(3²+4²) =5 (см).
* * * диагонали параллелограммы в точке пересечения делятся пополам * * *
ответ: SA =SC = 6 см SB=SD =5 см.