Если аб основание, тогда св боковая сторона, поскольку трапеция р/б, то св = ад = 10см, Проведём высоты из вершины тупых углов к большему основанию, обазначим их, как СМ и ДН. Получили два прямоугольных треугольника, которые равны по трём углам. Поскольку в р/б трапеции углы при основании равны, значит угол БСМ = углу АДН = 30градусам. АН и БМ из равенства треугольников равны. Также они лежат напротив угла в 30 градусов, соответсвенно равны 1/2 гипотенузы Т.е СВ, значит они равны 5 см. У нас остаётся отрезок МН = СД по свойству р/б трапеции. Поскоьку АБ=16, а АН и БМ 5 см, то НМ = СД = 6 см ответ: СД = 6 см
Так как перпендикуляры из В и С, опущенные на АD - параллельны,то ВF и ЕС при них секущие, и∠ 1=∠2, и∠ 3=∠ 4 как накрестлежащие. Рассмотрим треугольники ВМD и ВОЕ. Они подобны, так как оба прямоугольные по условию и имеют общий ∠ 1.Следовательно, и∠ 5 = ∠ 3 треугольника ВОЕ∠ 6 и ∠ 5 вписанные и опираются на одну и ту же дугу, которая стягивается хордой АВ. Следовательно,∠6 = ∠ 5. А ∠ 5 = ∠3 и потому и∠5=∠ 4, равенство с которым угла 3 доказано выше .Следовательно,∠ 6=∠ 4.Рассмотрим Δ АСН и Δ СОF Они прямоугольные, имеют общий угол АСН и потому подобны.Отсюда следует ∠ 2 = ∠7. Вписанный ∠7 опирается на ту же дугу, что вписанный ∠ 8 треугольника СВД, следовательно,∠7 = ∠8. Но ∠ 7= ∠2=∠ 1.⇒ ∠1=∠ 8. ⇒∠ 8=∠2 Рассмотрим Δ ВСF.Углы при основании ВF равны,СО делит ∠ ВСН на два равныхи является биссектрисой и высотой этого треугольника.Следовательно,Δ ВСF - равнобедренный. Но ЕО в треугольнике ВЕФ - также высота, и ВО=ОF.Этот треугольник также равнобедренный.∠ 1=∠ 9,а∠ 3= ∠10, т.к. ЕО высота и биссектриса равнобедренного треугольинка ВЕF Таким же образом треугольник ВСЕ и треугольник ЕFС равнобедренные и равны между собой. В результате всех этих доказательств мы имеем четырехугольник, в котором все стороны равны, и этого достаточно для того, чтобы утверждать равенство ЕF=ВС=1
Отрезок начинается с буквы А и заканчивается буквой В
АВ=10
ВС=7
ОТРЕЗОК ИДЕТ ТАК
АС=3СМ ВС=7 СМ
АВ=10 СМ (ВЕСЬ ОТРЕЗОК)