Объяснение:
1) треугольник САD = треугольнику АВС по двум сторонам и углу между ними, т.к АD=АВ=7, АС – общая, а угол DАС = углу САВ, т.к в равнобедренном треугольнике АС является высотой, медианой и биссектрисой.
2) т.к эти треугольники равны, то СD=СВ=3,5, значит треугольник — равносторонний. Тогда угол В=60°, а угол САD=30°
1) угол ВРЕ=180°-150°=30°
2) напротив угла в 30° лежит катет равный половине гипотенузы, значит, РВ=18 см.
3) т.к угол ВРЕ=30°, значит, угол ВЕР=60°
4) рассмотрим треугольник ВЕС. угол СВЕ =30°. напротив угла в 30° лежит катет равный половине гипотенузы, значит, СЕ=4,5 см.
5) рассмотрим треугольник СВР. по теореме Пифагора можем найти РС.
18^2 - 9^2=РС^2;
324-81=243;
РС=9√3
На сторонах ВС и АD параллелограмма АВСD отложены равные отрезки ВК и DM, докажи что АКСМ- параллеограм.
Объяснение:
1) Т.к. АВСD параллелограмм , то ∠В=∠D ,АВ=СD.
2) ΔАВК=ΔСDM по двум сторонам и углу между ними : ∠В=∠D ,АВ=СD и ВК=DK по условию. В равных треугольниках соответственные элементы равны →АК=СМ.
3) КС=ВС-ВК
║ ║
АМ=AD-АМ ⇒
КС=АМ ( из длин равных отрезков ВС и АD вычитаем длины равных отрезков ВК и DM )
4) По признаку параллелограмма " если противоположные стороны четырехугольника попарноравны, то этот четырехугольник — параллелограмм" , АВСD-параллелограмм.