М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Milena0011
Milena0011
06.02.2022 11:56 •  Геометрия

P-периметр чотирикутника дорівнює 20см.знайти сторони чотирикутника, якщо одна з них складає 40% р, а три інші рівні

👇
Ответ:
nik1ado21
nik1ado21
06.02.2022
Одна сторона 8 см., а остальные - 12 : 3 = 4 см
4,7(40 оценок)
Открыть все ответы
Ответ:
KoNetik2020
KoNetik2020
06.02.2022
1) Четырехугольник ADEC - трапеция (DE ║ AC). ∠BAC = ∠BCA ⇒ трапеция равнобедренная, значит, AD = CE = BA - BD = 6.
В трапеции ∠ВАС = ∠BCA  ⇒ и ∠ADE = ∠CED.
ΔADE = ΔCED по двум сторонам и углу между ними (AD = CE, DE - общая, ∠ADE = ∠CED).
2) AD║CF, AC║DF ⇒ ADFC - параллелограмм, значит, ∠DAC = ∠CFE.
∠ACE = ∠FEC как накрест лежащие углы при пересечении AC║DE секущей СЕ. Значит, ΔECF подобен ΔАВС по двум углам.
3) Т.к.  ΔECF подобен ΔАВС, то EF/AC = CE/BC
EF/10 = 6/13  ⇒ EF = 60/13
4) Пусть h - высота треугольника АВС, опущенная на боковую сторону.
Тогда Sabc = 13h/2 = √(p(p - a)(p - b)(p - c), где a, b, c - стороны треугольника АВС, р - его полупериметр
13h/2 = √(18 · 5 · 5 · 8)
13h/2 = √(9 · 2 · 5 · 5 · 4 · 2) = 3 · 5 · 4 = 60
h =120/13
5) AC║DF, значит, расстояние от точки А до DE  и от точки С до DF одинаковы, т.е. ΔADE и ΔDCF имеют одинаковые высоты, опущенные к основаниям DE и DF соответственно. Значит, площади этих треугольников относятся как длины этих оснований.
Sade/Sdcf = DE/DF
DF = AC = 10 как противолежащие стороны параллелограмма,
DE = DF - EF = 10 - 60/13 = 70/13
Sade/Sdcf = (70/13) / 10 = 7/13
4,8(29 оценок)
Ответ:
077771086
077771086
06.02.2022

Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.

Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать

Объяснение:

4,5(97 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ