1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
ответ: искомый угол равен 45°.
АС=АВ+1,5м (по условию задачи)
АВ=ВС, поскольку у равнобедренного треугольника боковые стороны равны между собой.
Периметр равен сумме всех сторон треугольника:
Р=АВ+ВС+АС=24м
АВ+АВ+(АВ+1,5)=24
3*АВ+1,5=24
3*АВ=22,5
АВ=22,5/3
АВ=7,5м
Значит АВ=ВС=7,5 м
АС=АВ+1,5=7,5+1,5=9 м
ответ: стороны треугольника равны АВ=ВС=7,5 м и АС=9 м
Задание2:
Треугольник АВС, ∠А=90°, катет АВ=9м.
Поскольку известно, что гипотенуза прямоугольного треугольника является диаметром окружности, значит гипотенуза ВС= 2*длину радиуса=2*7,5=15м.
По теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов, значит
ВС²=АВ²+АС²
15²=9²+АС²
225=81+АС²
АС²=144
АС=12 см
Периметр равен сумме всех сторон треугольника:
Р=АВ+ВС+АС=9+15+12=36 см
ответ: Периметр равен 36 см