1))). Если луч есть биссектриса угла, то любая точка его равноудалена от сторон этого угла.
2))). Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.
Свойства серединных перпендикуляров треугольника
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.
Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.
3))). 1. Точка пересечения биссектрис треугольника- центр вписанной окружности ;
2. Точка пересечения серединных перпендикуляров треугольника- центр описанной окружности ;
3. Точка пересечения медиан треугольника (медианы треугольника пересекаются в отношении 2:1)
4. Точка пересечения высот треугольника - ортоцентр фигуры (центр вписанной и описанной окружности).
Объяснение:
Дан прямоугольный параллелепипед, в основании которого - квадрат. Нужно найти расстояние от бокового ребра до диагонали параллелепипеда, которая по отношению к боковому ребру - скрещивающаяся.
Определение:
Расстояние между скрещивающимися прямыми – это расстояние от некоторой точки одной из скрещивающихся прямых до плоскости, проходящей через другую прямую параллельно первой прямой.
Иначе - это длина общего перпендикуляра двух скрещивающихся прямых, т.е. отрезка с концами на этих прямых и перпендикулярного каждой из этих прямых.
Проведем плоскость (диагональное сечение) через диагональ параллелепипеда. Она будет параллельна его боковому ребру. т.к. содержит перпендикуляр ОО1, соединяющий центры оснований и параллельный АА1.
Опустим из точки А ребра АА1 перпендикуляр АО на плоскость ВВ1D1D.
АО=А2О2
АО- половина диагонали основания ( квадрата) и является искомым расстоянием между ребром АА1 и диагональю В1Д.
Диагональ квадрата со стороной а равна а√2 (по т.Пифагора или d=a:sin45º)
АО=0,5а√2
Можно с тем же результатом найти расстояние от точки А, являющейся проекцией ребра АА1 на перпендикулярную ей плоскость АВСD, до проекции диагонали В1D на ту же самую плоскость, т.е. найти длину того же отрезка АО.