По теореме Пифагора , мы находим 2-ю сторону треугольника , а потом перемножаем обе стороны для нахождения площади Теорема Пифагора с^2=a^2=b^2 Так как нам известна гипотенуза и 1 катет , ищем по формуле 2 b^2 = c^2-a^2 b^2= 13^2-12^2 b^2=169-144=25 b=5 см Находим площадь S= ab S= 12*5 =60 см ответ S=60 см
Тетраэдр - это ОН...))) Поэтому суммарная длина ЕГО ребер..))) Все просто: периметр всех граней тетраэдра одинаковый, но каждое ребро участвует в двух гранях. поэтому: Основание 10 см, первая боковая - 2*10/3 (учитываем только 2 ребра, так как третье уже посчитано в основании), вторая боковая - 10/3 (2 ребра уже посчитаны) и у третьей боковой уже все посчитано. Тогда L = 10 + 2*10/3 +10/3 = 10 + 3*10/3 = 10+10 = 20 (cм)
ответ: L = 20 см
Можно и так: Количество ребер тетраэдра - 6. Так как сумма 3 из них составляет 10 см, то сумма длин всех ребер составит 2*10 = 20 (см)
Пусть этот треугольник будет АВС, где АВ и АС это катеты, а ВС - гипотенуза. Так как один угол в прямоугольном треугольнике равен 60, то другой 90-60=30 Значит, что данный треугольник - это половина равностороннего треугольника ДВС (у которого все стороны и углы равны) и меньший катет АС - это будет половина стороны ВС, так как больший катет АВ является одновременно и высотой и медианой равностороннего треугольника ДВС. Тогда пусть катет АС будет х, тогда гипотенуза ВС будет 2х, а их сумму мы знаем и составляем уравнение: х+2х=96 3х=96 х=32 см (это длина катета АС) тогда длина гипотенузы ВС будет 32*2=64 см
Теорема Пифагора
с^2=a^2=b^2
Так как нам известна гипотенуза и 1 катет , ищем по формуле 2
b^2 = c^2-a^2
b^2= 13^2-12^2
b^2=169-144=25
b=5 см
Находим площадь
S= ab
S= 12*5 =60 см
ответ S=60 см