1. Т.к. треугольник равнобедренный, то высота=биссектриса=медиана ⇒ делит угол 120° на два по 60, образует с основанием два угла по 90° ⇒ образуются два одинаковых прямоугольных Δ. Углы при основании по 30°, сторона, противолежащая углу в 30 = половине гипотенузы ⇒ гипотенуза в данном случае = 9*2=18.
2. Меньшему углу соответствует меньший катет ⇒ этот угол 30° (90-60), применяем свойство из 1-го задания. Гипотенуза = 12*2 = 24.
3. Нет, не может. Если угол А - тупой, то противолежащая сторона (BC) должна быть наибольшей, что противоречит условию.
4. Если угол, противоположный основанию = 40, то углы при основании = (180-40)/2 = 70°. Если углы при основании по 40, то третий угол = 180-40*2 =100°.
Сделать чертёж. Разделить сторону ВС на 4 части. Обозначить на расстоянии 1 от точки В точку N. Тогда BN=1, NC=3. Провести прямую MN согласно условию. Параллельно ей провести из точки А прямую , которая пересечёт сторону ВС в точке Р. Рассмотреть треугольник MNC. Отрезок АР в нём - средняя линия, следовательно, точка Р делит сторону NC пополам. Но NC=3, значит, NP=1,5. Таким образом, BN относится к NP как 1:1,5 или как 2:3. Поскольку MN и АР параллельны (по построению), то таким же будет и соотношение отсекаемых ими отрезков на стороне АВ. ответ: 2:3
угол С=х, тогда угол А=4х, угол В=х+60
их сумма 180, получим
х+4х+х+60=180
6х=120
х=20 уголС
80 уголА
80 уголВ