1. Верно ли утверждение: "Четырехугольник является правильным, если все его углы равны между собой"?
б) нет, так как должны быть равны и стороны, иначе это может быть прямоугольник.
2. Все стороны многоугольника являются хордами окружности. Можно ли утверждать, что многоугольник описан около окружности?
б) нет, этот многоугольник вписан в окружность.
3. Чему равна дуга окружности (в градусах), стягиваемая стороной правильного треугольника?
б) 120° (360° : 3) .
4. Сколько сторон имеет правильный многоугольник, у которого сумма всех его углов равна 540°?
Сумма углов многоугольника равна 180°(n - 2), где n - количество сторон.
180°(n - 2) = 540°
n - 2 = 3
n = 5
а) 5.
5. Чему равна длина окружности, если ее диаметр равен 50 см?
С = πd = 50π см
а) 50π см.
6. Из круга, радиус которого равен 20 см, вырезан сектор. Дуга сектора равна 90°. Чему равна площадь оставшейся части круга?
Дуга оставшейся части круга:
α = 360° - 90° = 270°
Sсект = πR² · α / 360°
Sсект = π · 400 · 270° / 360° = 300π см²
а) 300π см²
ОН - відстань від т. О до більшої сторони прямокутника ВС (отже ОН - висота трикутника ВСО)
ОМ - відстань від т. О до більшої сторони прямокутника АД (отже ОМ - висота трикутника АДО)
ОР - відстань від т. О до меншої сторони прямокутника АВ (отже ОР - висота трикутника АВО)
ОК - відстань від т. О до меншої сторони прямокутника СД (отже ОК - висота трикутника СДО)
Оскільки Діагоналі прямокутника мають однакову довжину, а також в точці перетину діляться навпіл, значить трикутник ВСО=трикутнику АДО та трикутник АВО=трикутнику СДО.
А це означає, що і висоти у попарно рівних трикутниках між собою рівні, а саме
ОК=ОР, а ОН=ОМ.
Нехай ОН=ОМ=Х см, тоді ОК=ОР=Х+5 см (по умові задачі сказано, що
точка перетину діагоналей прямокутника лежить на відстані від більшої сторони на 5 см ближче, ніж від меншої).
У прямокутника протилежні сторони рівні.
АВ=СД=ОН+ОМ=Х+Х=2Х см
ВС=АД=ОР+ОК=(Х+5) +(Х+5)=2Х+10 см
Периметр = сумі довжин усіх сторін прямокутника
Периметр = АВ+ВС+СД+АД=44 см
Отже
2Х+(2Х+10) + 2Х+(2Х+10)=44
8Х+20=44
8Х=24
Х=3 см
Виходить, що
АВ=СД=2Х=2*3=6 см
ВС=АД=2Х+10 =2*3+10=6+10=16 см
Відповідь: сторони прямокутника АВ=СД=6 см та ВС=АД=16 см