Рассмотрим ∆CBD и ∆ABD.
Угол CBD=180°–угол ABD=180°–90°=90° (смежные углы), следовательно ∆CBD – прямоугольный с прямым углом CBD, ∆ABD – прямоугольный с прямым углом ABD
CD=AD по условию;
BD – общая сторона;
Следовательно ∆CBD=∆ABD как прямоугольные треугольники с равными гипотенузой и катетом.
Тогда угол ADB=угол CDB=55° как соответственные углы равных треугольников.
Так как углы ADF, ADB u CBD – смежные, то угол ADF=180°–угол ADB–угол CDB=180°–55°–55°=70°.
Рассмотрим ∆FAD.
AF=AD по условию, следовательно ∆FAD – равнобедренный с основанием FD.
Углы при основании равнобедренного треугольника равны, значит угол AFD=угол ADF=70°.
ответ: 70°
PΔABC ≈ 27.91
Объяснение:
Чтобы найти периметр треугольника, надо сначала найти длину каждой стороны треугольника, в этом нам формула квадрата расстояния между двумя точками в пространстве, или можно взять формулу модуля вектора, кому как удобно...
AB² = (x₁ - x₂)² + (y₁ - y₂)² + (z₁ - z₂)² ;
AB² = (2 - 3)² + (4 + 5)² + (-2 - 1)² = (-1)² + 9² + (-3)² = 1+81+9 = 1
AB = √91 ≈ 9,54;
BC² = (3 + 2)² + (-5 - 3)² + (1 - 5)² = 5² + (-8)² + (-4)² = 25+64+16 = 105
BC = √105 ≈ 10,25;
AC² = (2 + 2)² + (4 - 3)² + (-2 - 5)² = 4² + 1² + (-7)² = 16+1+49 = 66
AC = √66 ≈ 8,12
PΔABC ≈ 9,54 + 10,25 + 8,12 ≈ 27.91