Рассмотрим треугольник ABK. Он прямоугольный (перпендикуляр = 90градусов). BK = половине AB, а AB - гипотенуза. Катет, лежащий против угла в 30 градусов равен половине гипотенузы. Следовательно, угол А = 30 градусов. Т.к. в параллелограмме противолежащие углы равны, угол С тоже 30 градусов. Теперь найдем угол D. Т.к. в четырехугольнике сумма углов 360 градусов, сумма углов D и B = 360 - 2*30 = 300. => 300/2 = 150. ответ: C = 30 градусов, D = 150 градусов
Дан треугольник ABC. Плоскость, параллельная прямой AB, пересекает сторону AC этого треугольника в точке A1, а сторону BC в точке B1. Найдите длину отрезка A1B1, если AB = 15 см, а AA1: AC = 2: 3. ------- Плоскость треугольника АВС пересекается с плоскостью. параллельной по условию стороне АВ. Если прямая параллельна плоскости и содержится в другой плоскости, пересекающей первую, то она параллельна линии пересечения этих плоскостей. Отрезок А1В1- часть линии пересечения данной плоскости и плоскости треугольника АВС. Следовательно, А1В1 || АВ. АС и ВС - секущие при параллельных прямых, отсюда треугольники А1СВ1 и АСВ - подобны. Из их подобия следует отношение А1В1:АВ=2:3 А1В1:15=2:3 3 А1В1=30 А1В1=10 см
Дан треугольник ABC. Плоскость, параллельная прямой AB, пересекает сторону AC этого треугольника в точке A1, а сторону BC в точке B1. Найдите длину отрезка A1B1, если AB = 15 см, а AA1: AC = 2: 3. ------- Плоскость треугольника АВС пересекается с плоскостью. параллельной по условию стороне АВ. Если прямая параллельна плоскости и содержится в другой плоскости, пересекающей первую, то она параллельна линии пересечения этих плоскостей. Отрезок А1В1- часть линии пересечения данной плоскости и плоскости треугольника АВС. Следовательно, А1В1 || АВ. АС и ВС - секущие при параллельных прямых, отсюда треугольники А1СВ1 и АСВ - подобны. Из их подобия следует отношение А1В1:АВ=2:3 А1В1:15=2:3 3 А1В1=30 А1В1=10 см
BK = половине AB, а AB - гипотенуза. Катет, лежащий против угла в 30 градусов равен половине гипотенузы. Следовательно, угол А = 30 градусов.
Т.к. в параллелограмме противолежащие углы равны, угол С тоже 30 градусов.
Теперь найдем угол D. Т.к. в четырехугольнике сумма углов 360 градусов, сумма углов D и B = 360 - 2*30 = 300. => 300/2 = 150.
ответ: C = 30 градусов, D = 150 градусов