По мнению историка математики Морица Кантора в Древнем Египте во времена царяАменемхета I (около XXIII век до н. э.) было известно о прямоугольном треугольнике со сторонами 3, 4, 5 — его использовали гарпедонапты — «натягиватели верёвок»[1]. Вдревневавилонском тексте, относимом ко временам Хаммурапи (XX век до н. э.), приведено приближённое вычисление гипотенузы[2]. По мнению Ван-дер-Вардена, очень вероятно, что соотношение в общем виде было известно в Вавилоне уже около XVIII века до н. э. В древнекитайской книге Чжоу би суань цзин (кит. 周髀算經), относимой к периоду V—III веков до н. э., приводится треугольник со сторонами 3, 4 и 5, притом изображение можно трактовать как графическое обоснование соотношения теоремы[3].
Общепринято, что доказательство соотношения данодревнегреческим философом Пифагором (570—490 до н. э.). Имеется свидетельство Прокла (485—410 до н. э.), что Пифагор использовал алгебраические методы, чтобы находить пифагоровы тройки[⇨][4][5], но при этом в течении пяти веков после смерти Пифагора прямых упоминаний о доказательстве его авторства не находится. Однако, когда такие авторы как Плутарх и Цицерон пишут о теореме Пифагора, из содержания следует, будто авторство Пифагора общеизвестно и несомненно:[6][7]. Существует предание, согласно которому Пифагор якобы отпраздновал открытие своей теоремы гигантским пиром, заклав на радостях сотню быков[8].
Приблизительно в 400 году до н. э., согласно Проклу, Платон дал метод нахождения пифагоровых троек, сочетающий алгебру и геометрию. Около в 300 года до н. э. в«Началах» Евклида появилось старейшее аксиоматическое доказательство теоремы Пифагора[9].
Если расстояние от точки Д до каждой вершины = 4см, то расстояние от точки Д до плоскости Δ это длина высоты пирамиды. высота проектируется в центр правильного треугольника(основания пирамиды) на пересечение медиан, биссектрис и высот. высота правильного треугольника: h=(a*√3)/2 h=(6*√3)/2, h=3*√3. медианы в точке пересечения делятся в отношении 2:1, считая от вершины треугольника=>, (2/3)h=(2/3)*(3*√3), (2/3)h=(2*√3) рассмотрим прямоугольный Δ:(2/3) h=(2*√3) обозначим его ДО-катет в основании пирамиды, расстояние от точки Д до вершины Δ, ДА= 6см - гипотенуза. по теореме Пифагора: 6^2=(2*√3)^2+(ДО)^2 ДО=3√2
≈ 7,8393778.