Дано: Решение:
∠AOB = 1/9 ∠BOC ∠AOB = ∠COD и ∠BOC = ∠DOA как
вертикальные углы при пересекающихся
Найти: ∠AOB; ∠BOC; прямых.
∠COD; ∠DOA Тогда: ∠AOB = ∠COD = х
∠BOC = ∠DOA = 9х
Сумма всех 4-х углов - 360°
2*(х + 9х) = 360
10х = 180
х = 18 9х = 162
∠AOB = ∠COD = 18°
∠BOC = ∠DOA = 162°
Может так ?
тр.к АВ=ВС, то АВС равнобедренный и ВАС=ВСА.
Рассмотрим АСД, он прямоугольный, т. к. ВАС=САД, то АС- биссектриса угла ВАД.
пусть уголСАД=х, тогда угол АДС=2х(т. к. АС-биссектриса), значит
САД+АСД+СДА=180
х+2х+90=180
3х=90
х=30
значит ВАД=60 АДС=60 ДСВ=120 АВС=120