Основание прямой призмы - ромб. одна из диагоналей которого равна его стороне. боковое ребро 2√3. площадь полной поверхности равна 48√3. найти площадь основания.
Если одна из диагоналей ромба равна его стороне, то острый угол ромба равен 60°. Обозначим сторону ромба за а. Площадь такого ромба равна двум равносторонним треугольникам: So = 2(a²√3/4) = a²√3/2. Полная поверхность равна: Sп = 2Sо+4а*(2√3) = 2*(a²√3/2)+8а√3 = а²√3+8а√3. Приравняем это выражение заданному значению площади: а²√3+8а√3 =48√3. Получаем квадратное уравнение а²√3+8а√3-48√3 = 0. После сокращения имеем а²+8а-48 = 0. Квадратное уравнение, решаем относительно a: Ищем дискриминант: D=8^2-4*1*(-48)=64-4*(-48)=64-(-4*48)=64-(-192)=64+192=256;Дискриминант больше 0, уравнение имеет 2 корня: a₁=(√256-8)/(2*1)=(16-8)/2=8/2=4;a₂=(-√256-8)/(2*1)=(-16-8)/2=-24/2=-12 это значение отбрасываем., Площадь основания равна: So = a²√3/2 = 4²√3/2 = 8√3.
1) В параллелограмме угол A = углу C , угол B = углу D = 60 Если продолжить сторону AB вниз , ниже точки А, и запишем ее конец как К то мы получим угол, который вертикальный углу В и значит равен ему. B --------------------C \60 \ \ \ A\__________60\D \60 K \ Известен угол CAB = 40 Угол BAD и угол DAK - смежные углы. Сумма смежных углов равна 180 ACD = 180 - угол BAC - угол DAK = 180 - 40 - 60 = 80 ответ: 80.
2) Смотреть картинку) Углы EBC и REO вертикальные, равны = 35 Углы KEL и ADC вертикальные, и равны друг другу Углы AED и KER равны = 70 Углы KEL, KER и REO смежные. KEL = 180 - 70 - 35 = 75 ответ: 75
3) Представим, что катет 1 = 6х, катет 2 = 8х По теореме Пифагора найдем х (6х)^2 + (8x)^2 = 20^2 36x^2 + 64x^2 = 400 100x^2 = 400 x^2 = 400/100 = 4 x = 2 катет 1 = 6*2 = 12 катет 2 = 8*2 = 16 Периметр равен сумме всех сторон 12+16+20 = 48 ответ: 48
Теорема - свойство биссектрисы треугольника.Если AA1 - биссектриса внутреннего угла A треугольника ABC, тоВА*/А*С= ВА/ АС . Иными словами, биссектриса внутреннего угла треугольника делит противоположную сторону на части, пропорциональные заключающим ее сторонам.Доказательство.Проведем через B прямую, параллельную AC, и обозначим через D точку пересечения этой прямой с продолжением AA1 . Согласно свойству параллельных прямых имеем ÐBDA = ÐCAD. Так как AA1 - биссектриса, то ÐCAD = ÐDAB. Итак, ÐBDA =ÐDAB, потому BD = BA. Из подобия треугольников CAA1 и BDA1 (по второму признаку ÐBDA1 = ÐCAA1 , ÐBA1 D = ÐCA1A) получаем ВА*/А*С =ВD/АС =ВА/АС , что и требовалось доказать. Заметим, что можно было бы с тем же успехом провести через B прямую, параллельную биссектрисе AA1,до пересечения в точке E с продолжением CA . Тогда EA = AB и СА /АЕ =СА/АВ .
Обозначим сторону ромба за а.
Площадь такого ромба равна двум равносторонним треугольникам:
So = 2(a²√3/4) = a²√3/2.
Полная поверхность равна:
Sп = 2Sо+4а*(2√3) = 2*(a²√3/2)+8а√3 = а²√3+8а√3.
Приравняем это выражение заданному значению площади:
а²√3+8а√3 =48√3.
Получаем квадратное уравнение а²√3+8а√3-48√3 = 0.
После сокращения имеем а²+8а-48 = 0.
Квадратное уравнение, решаем относительно a: Ищем дискриминант:
D=8^2-4*1*(-48)=64-4*(-48)=64-(-4*48)=64-(-192)=64+192=256;Дискриминант больше 0, уравнение имеет 2 корня:
a₁=(√256-8)/(2*1)=(16-8)/2=8/2=4;a₂=(-√256-8)/(2*1)=(-16-8)/2=-24/2=-12 это значение отбрасываем.,
Площадь основания равна:
So = a²√3/2 = 4²√3/2 = 8√3.