С(-16,5;-5,5) или С(-21,5;-6,5)
Объяснение:
1) Точки С делит отрезок АВ в отношении пять к трем считая от точки А, значит ВС:СА=3:5, значит ВС:ВА=3:8. Координаты ВА ( -9-11;-4-0). ВА(-20;-4), тогда ВС=3/8ВА. ВС=(3/8*(-20);3/8*(-4)), ВС(-15/2;-3/2).
Имеем В(-9;-4), ВС(-15/2;-3/2), то С( -15/2-9;-3/2-4), С(-16,5;-5,5)
Примечание: Координаты вектора правильно писать в фигурных скобках, а коордитнты точки- в круглых
2) Точки С делит отрезок АВ в отношении пять к трем считая от точки В, значит ВС:СА=5:3, значит ВС:ВА=5:8. Координаты ВА ( -9-11;-4-0). ВА(-20;-4), тогда ВС=5/8ВА. ВС=(5/8*(-20);5/8*(-4)), ВС(-25/2;-5/2).
Имеем В(-9;-4), ВС(-25/2;-5/2), то С( -25/2-9;-5/2-4), С(-21,5;-6,5)
Высоты трапеции BF и CE равны диаметру вписанной окружности.
Прямоугольные треугольники ABF и DCE равны.
По теореме Пифагора из треугольника ECD находим ED:
ED2=CD2−CE2;ED2=252−152;ED=252−152−−−−−−−−√;ED=20 см.
Так как в трапецию вписана окружность, то суммы противоположных сторон трапеции равны.
BC+AD=AB+CD;BC=FE, пустьBC=x, тогдаx+20+x+20=25+25;x=5.
BC= 5 см, AD= 20+5+20 = 45 см.
Площадь трапеции S= BC+AD2⋅EC=5+452⋅15 = 375 см2.
Основания трапеции равны 5 см и 45 см, площадь трапеции равна 375 см2.
Подробнее - на -
S = √(18(18-9)(18-10)(18-17)) = √1296 = 36 см.
2) Высота, опущенная на сторону а, равна:
Высоты треугольника со сторонами 11 см, 25 см и 30 см равны:
a b c
11 25 30.
ha hb hc
24 10,56 8,8 .
На меньшую сторону опускается наибольшая высота.
Она равна 24 см.