Так как точка S равноудалена от вершин треугольника АВС, она проецируется в центр описанной окружности этого треугольника - точку О. А так как треугольник АВС прямоугольный, то этот центр находится на середине гипотенузы АВ. Точка J по этой же причине находится на отрезке SO, перпендикулярном плоскости АВС. АО = ВО = СО как радиусы описанной окружности.
JO = SO - SJ = 40 - 25 = 15 см. Тогда в треугольнике CJO по Пифагору
СО = √(CJ²-JO²) = √(25²-15²) = 20 cм. АВ = 2·СО = 40 см.
1 стор.-х 2 стор- 5х периметр (х+5х)*2=180 6х*2=180 6х=180:2 6х=90 х=90:6 х=15 см это 1 сторона 15*5=75 см это 2 сторона
раз разность двух сторон равна 15 см,значит 1 сторона на 15 см больше,чем 2 сторона 2 стор.-х 1 стор.-х+15 периметр ( х+х+15)*2=150 2х+15=150:2 2х+15=75 2х=75-15 2х=60 х=60:2 х=30 см это 2 сторона 30+15=45 см это 1 сторона
Sabc = 384 см².
Объяснение:
Так как точка S равноудалена от вершин треугольника АВС, она проецируется в центр описанной окружности этого треугольника - точку О. А так как треугольник АВС прямоугольный, то этот центр находится на середине гипотенузы АВ. Точка J по этой же причине находится на отрезке SO, перпендикулярном плоскости АВС. АО = ВО = СО как радиусы описанной окружности.
JO = SO - SJ = 40 - 25 = 15 см. Тогда в треугольнике CJO по Пифагору
СО = √(CJ²-JO²) = √(25²-15²) = 20 cм. АВ = 2·СО = 40 см.
Это гипотенуза. Второй катет равен по Пифагору:
АС = √(АВ²-ВС²) = √(40²-24²) = 32 см.
Площадь треугольника АВС равна
Sabc = (1/2)·АС·ВС = (1/2)·32·24 = 384 см².