Основание пирамиды - правильный треугольник; одна из боковых граней перпендикулярна к основанию, а две другие наклонены к нему под углом 60 градусов. под каким углом наклонено к плоскости основания наибольшее боковое ребро?
В пирамиде ЅАВС грань АЅС перпендикулярна основанию АВС. Грани АЅВ и СЅВ наклонены под равным углом к основанию, АВ=СВ (дано), ⇒ грани АЅВ и СЅВ равны, ⇒ АЅ=СЅ. Высота ЅН пирамиды ⊥АВС, следовательно, ⊥ любой прямой в плоскости АВС.
Пусть АВ=ВС=АС= а.
Высота ЅН - медиана равнобедренного треугольника АЅС.⇒ АН=НС=а/2 Проекции ребер ЅА и ЅС равны половине стороны АС. Проекция ЅB=а√3/2 ⇒ ЅВ наибольшее ребро пирамиды, а угол ЅВН - искомый.
Угол между основанием и боковой гранью – двугранный. Его величина определяется градусной мерой линейного угла, сторонами которого являются лучи, проведённые в его гранях перпендикулярно ребру с общим началом на нём.
Проведем НК⊥ВС. Наклонная ЅК⊥ВС по т. о 3-х перпендикулярах. ∠ЅКН=60° (дано).
Угол С в прямоугольном ∆ НКС=60°, катет НК=НС•sin∠C=a2•√3/2=(a√3):4
Пусть АК - биссектриса треугольника АВС , ВМ - его медиана. Т.к. биссектриса треугольника АВМ перпендикулярна стороне ВМ, она является его высотой. Если биссектриса треугольника совпадает с высотой, она является и его медианой,⇒ треугольник ВАМ - равнобедренный. АВ=АМ. ВМ - медиана треугольника АВС, ⇒ АВ=АМ=МС, и АС=2 АВ. Пусть средняя по длине сторона равна х Если предположить, что АВ - средняя сторона, то АС=х+1, ВС=х-1 Тогда АС=2х=х+1, откуда х=1, и ВС=1-1=0, чего быть не может. ⇒ ВС- средняя сторона. ВС=х, АС=х+1, АВ=х-1 АС=2(х-1)=2х-2 2х-2=х+1 ⇒ х=3 ВС=3 АВ=3-1=2 АС=3+1=4 - это наибольшее значение самой длинной стороны
В абсолютно любой трапеции (не важно, чему равны ее стороны))) треугольники, получившиеся после пересечения диагоналей трапеции, обладают следующими свойствами: треугольники, опирающиеся на боковые стороны трапеции (выделены желтым цветом на рис.)), имеют равные площади... это равновеликие треугольники... это легко доказывается... треугольники, опирающиеся на основания трапеции, всегда подобны, т.к. они содержат вертикальные (равные) углы и накрест лежащие (тоже равные) углы (при параллельных основаниях трапеции) треугольники AOD и DOC в принципе могут быть подобны, если у них есть два равных угла... равные углы будут лежать против соответственных сторон, например, против самых маленьких сторон треугольников ---самые маленькие углы))) найдем их косинусы по т.косинусов cos(BDC) = (12² + 10² - 2.5²) / 240 = 23775/24000 = 317/320 = 0.990625 cos(BDA) = (12² + 7.5² - 5²) / 180 = 17525/18000 = 701/720 = 0.9736(1) косинусы не равны ---> углы не равны ---> треугольники НЕ подобны)))
ответ: arctg√3/2
Подробное объяснение:
В пирамиде ЅАВС грань АЅС перпендикулярна основанию АВС. Грани АЅВ и СЅВ наклонены под равным углом к основанию, АВ=СВ (дано), ⇒ грани АЅВ и СЅВ равны, ⇒ АЅ=СЅ. Высота ЅН пирамиды ⊥АВС, следовательно, ⊥ любой прямой в плоскости АВС.
Пусть АВ=ВС=АС= а.
Высота ЅН - медиана равнобедренного треугольника АЅС.⇒ АН=НС=а/2 Проекции ребер ЅА и ЅС равны половине стороны АС. Проекция ЅB=а√3/2 ⇒ ЅВ наибольшее ребро пирамиды, а угол ЅВН - искомый.
Угол между основанием и боковой гранью – двугранный. Его величина определяется градусной мерой линейного угла, сторонами которого являются лучи, проведённые в его гранях перпендикулярно ребру с общим началом на нём.
Проведем НК⊥ВС. Наклонная ЅК⊥ВС по т. о 3-х перпендикулярах. ∠ЅКН=60° (дано).
Угол С в прямоугольном ∆ НКС=60°, катет НК=НС•sin∠C=a2•√3/2=(a√3):4
Из ∆ ЅНК высота ЅН=НК•tg60°=3a/4 ⇒
tg∠SBH=SH:BH=3a•2:4a√3=√3/2
Искомый угол =arctg√3/2