DOA = 70°. Дано в задаче.
BOC = DOA = 70°. Вертикальные углы равны (1).
DOC = 180° - 70° - 110°. Смежные углы в сумме дают 180° (2).
AOB = DOC = 110°. (1).
ODC = (180° - 110°) / 2 = 35°. Сумма углов треугольника равна 180° (3). Если треугольник равнобедренный, то углы при его основаниях равны (4).
ADO = 90° - 35° = 55°. Два угла составляют прямой угол (5).
OAD = ADO = 55°. (4).
OAB = 90° - 55° = 35°. (5).
OBA = OAB = 35°. (4).
OBC = 90° - 35° = 55°. (5).
OCB = OBC = 55°. (4).
Все остальные углы состоят из других и их можно посчитать по сумме. Например:
DAB = DAO + BAO = 55° + 35° = 90°.
Объяснение:
1. В трапеции углы прилежащие к боковой стороне равны 180°.
∠В=180°-70°=110°;
∠С=180°-50°=130°.
***
2. В равнобокой трапеции углы при основаниях равны:
∠F=∠M=100°;
∠E=∠N=180°-100°=80°.
***
3) ∠P=180°-75°=105°;
∠S=180°-100°=80°.
***
4) ∠M= 180°-65°=115°;
∠F=∠E=90°.
***
5) ∠KLN=∠LNM=30*, как накрест лежащие при KL║MN и секущей NL.
∠N=30°+30°=60°;
∠L=∠K=180°-60°=120°;
∠M=180°-120°=60°.
***
6) ???
***
7) ∠C=180°-60°=120°;
∠ВАС=∠ВСА=120°-90°=30°;
∠A=30°+30°=60°;
∠B=180°-60°=120°.
***
8) ∠K=∠RMK=(180°-50°)/2=65°;
∠R=180°-65°=115°;
∠SRM=115°-50°=65°;
∠SMR=180-(90°+65°)=25°;
∠M=25°+65°=90°.
***
9) ∠PTL=180°-(90°+55°)=180°-145°=35°;
∠LTO=∠O=90°-35°=55°;
∠L=180°-55°=125°.
∠P=∠T=90°.
***
10) ???
АС-7см,8мм
ВС-2см,5мм
АВ-?см,мм
1)7см,8мм+2см,5мм=10см,3мм
ответ:10см,8мм длина отрезка АВ.