A. Продлим медиану АМ до пересечения с продолжением стороны ВС трапеции. Треугольники АМD и СMQ подобны по двум углам (<MCQ=<MDA как накрест лежащие при параллельных BQ и AD, <CMQ =<AMD как вертикальные). Из подобия имеем: CQ/AD=СM/MD=1 (так как СМ=MD - дано). Итак, CQ=AD. Тогда BQ=BC+CQ. Но BC=(1/3)*AD (дано), а CQ=AD (доказано выше). Следовательно, BQ=(1/3)*AD+AD, отсюда 3BQ=4AD. BQ/AD=4/3. Треугольники АРD и ВРQ подобны по двум углам (<РВQ=<РDA как накрест лежащие при параллельных BQ и AD и секущей BD, <ВРQ =<AРD как вертикальные). Из подобия имеем: ВР/PD=ВQ/AD=4/3. Что и требовалось доказать.
В. Площадь трапеции АВСD Sabcd=(BC+AD)*BH/2=(2/3)AD*BH. Площадь треугольника AMD равна Samd=(1/2)*AD*PH. Площадь треугольника ABD равна Sabd=(1/2)*AD*BH. Площадь треугольника AMD равна Samd=(1/2)*AD*MK. Но МК=(1/2)*ВН (из подобия треугольников AMD и CMQ). Значит Samd=(1/4)*AD*ВН. Площадь треугольника AРD равна Saрd=(1/2)*AD*РТ. Но РТ=(3/7)*ВН (из подобия треугольников AMQ и APD). Значит Saрd=(3/14)*AD*ВН. Площадь треугольника РМD равна Spmd=Samd-Sapd=(1/4-3/14)*AD*ВН =(1/28)*AD*ВН Sbcmp=Sabcd-Sabd-Spmd=(2/3-1/2-1/28)AD*BH = (11/84)*AD*BH. (2/3)AD*BH=56 (дано). Тогда AD*BH=84. Sbcmp=(11/84)*84=11.
По мнению историка математики Морица Кантора в Древнем Египте во времена царяАменемхета I (около XXIII век до н. э.) было известно о прямоугольном треугольнике со сторонами 3, 4, 5 — его использовали гарпедонапты — «натягиватели верёвок»[1]. Вдревневавилонском тексте, относимом ко временам Хаммурапи (XX век до н. э.), приведено приближённое вычисление гипотенузы[2]. По мнению Ван-дер-Вардена, очень вероятно, что соотношение в общем виде было известно в Вавилоне уже около XVIII века до н. э. В древнекитайской книге Чжоу би суань цзин (кит. 周髀算經), относимой к периоду V—III веков до н. э., приводится треугольник со сторонами 3, 4 и 5, притом изображение можно трактовать как графическое обоснование соотношения теоремы[3].
Общепринято, что доказательство соотношения данодревнегреческим философом Пифагором (570—490 до н. э.). Имеется свидетельство Прокла (485—410 до н. э.), что Пифагор использовал алгебраические методы, чтобы находить пифагоровы тройки[⇨][4][5], но при этом в течении пяти веков после смерти Пифагора прямых упоминаний о доказательстве его авторства не находится. Однако, когда такие авторы как Плутарх и Цицерон пишут о теореме Пифагора, из содержания следует, будто авторство Пифагора общеизвестно и несомненно:[6][7]. Существует предание, согласно которому Пифагор якобы отпраздновал открытие своей теоремы гигантским пиром, заклав на радостях сотню быков[8].
Приблизительно в 400 году до н. э., согласно Проклу, Платон дал метод нахождения пифагоровых троек, сочетающий алгебру и геометрию. Около в 300 года до н. э. в«Началах» Евклида появилось старейшее аксиоматическое доказательство теоремы Пифагора[9].