М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
princessss88
princessss88
19.02.2022 16:59 •  Геометрия

Решите на листочке, надо(чертёж,дано тоже надо)заранее

👇
Открыть все ответы
Ответ:
Kakation
Kakation
19.02.2022

Перпендикуляр от точки к прямой

Отрезок AC называется перпендикуляром, проведённым из точки A прямой a , если прямые AC и a перпендикулярны.

пер3.jpg

Точка C называется основанием перпендикуляра.

От точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.

Perpendikuls.png Perpendikuls1.png

Докажем, что от точки A , не лежащей на прямой BC , можно провести перпендикуляр к этой прямой.

Допустим, что дан угол ∡ABC .

Отложим от луча BC угол, равный данному, и совместим эти углы накладыванием (представим, что сложим лист бумаги с равными углами по стороне BC ).

Сторона BA совместится со стороной BA1 .

При этом точка A наложится на некоторую точку A1 .

Следовательно, совмещается угол ∡ACB с ∡A1CB .

Но углы ∡ACB и ∡A1CB — смежные, значит, каждый из них прямой.

Прямая AA1 перпендикулярна прямой BC , а отрезок AC является перпендикуляром от точки A к прямой BC .

Если допустить, что через точку A можно провести ещё один перпендикуляр к прямой BC , то он бы находился на прямой, пересекающейся с AA1 . Но две к одной и той же прямой перпендикулярные прямые должны быть параллельны и не могут пересекаться.

Это противоречие, что означает: через данную точку к прямой можно провести только один перпендикуляр.

Медианы, биссектрисы и высоты треугольника

Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.

Поэтому для построения медианы необходимо выполнить следующие действия:

1. найти середину стороны;

2. соединить точку, являющуюся серединой стороны треугольника, с противолежащей вершиной отрезком — это и будет медиана.

Mediana.png

У треугольника три стороны, следовательно, можно построить три медианы.

Все медианы пересекаются в одной точке.

Mediana1.png

Биссектриса треугольника — это отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противоположной стороне.

Поэтому для построения биссектрисы необходимо выполнить следующие действия:

1. построить биссектрису какого-либо угла треугольника (биссектриса угла — это луч, выходящий из вершины угла и делящий его на две равные части);

2. найти точку пересечения биссектрисы угла треугольника с противоположной стороной;

3. соединить вершину треугольника с точкой пересечения на противоположной стороне отрезком — это и будет биссектриса треугольника.

Bisektrise.png

У треугольника три угла и три биссектрисы.

Все биссектрисы пересекаются в одной точке.

Bisektrise1.png

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противоположную сторону.

Поэтому для построения высоты необходимо выполнить следующие действия:

1. провести прямую, содержащую одну из сторон треугольника (в случае, если проводится высота из вершины острого угла в тупоугольном треугольнике);

2. из вершины, лежащей напротив проведённой прямой, опустить перпендикуляр к ней (перпендикуляр — это отрезок, проведённый из точки к прямой, составляющей с ней угол 90° ) — это и будет высота.

Augstums.png

Так же как медианы и биссектрисы, треугольник имеет три высоты.

Высоты треугольника пересекаются в одной точке.

Augstums1.png

Но, как выше упомянуто, для некоторых видов треугольников построение высот и точки их пересечения отличаются.

Если треугольник с прямым углом, то стороны, образующие прямой угол, можно назвать высотами, так как они перпендикулярны одна к другой. Точкой пересечения высот является общая вершина перпендикулярных сторон.

Augstums2.png

Если треугольник с тупым углом, то высоты, опущенные с вершин острых углов, выходят вне треугольника к продолжениям сторон. Прямые, на которых расположены высоты, пересекаются вне треугольника.

Augstums3.png

Если из одной и той же вершины провести медиану, биссектрису и высоту, то медиана окажется самым длинным отрезком, а высота — самым коротким отрезком.

4,8(31 оценок)
Ответ:
pankuznetsov
pankuznetsov
19.02.2022
Припустимо, що наша трапеція АВСД, в якої паралельні сторони, тобто її основи ВС=4см, АД=25см. Бічні сторони АВ=13 см, СД=20 см.
Площа трапеції дорівнює добутку висоти трапеції на половину суми його основ.
Тобто для того, щоб знайти площу трапеції нам потрібно знайти розмір її висоти.
Для цього з верши В та С опустимо дві висоти на основу АД.
У нас вийшло дві висоти ВК та СН, які між собою рівні, оскільки КВСН - це прямокутник, а в прямокутника протилежні сторони рівні.
А це означає, що ВС=КН=4 см.
Також зазначимо, що АК=АД-КН-ДН=25-4-ДН=21-ДН
Розглянемо трикутник АВК, він прямокутний, бо ВК - це висота, а значит в цьому трикутнику ∠К=90°.
АВ - гіпотенуза, а ВК та АК  - це два катети.
По теоремі Піфагора ( квадрат гіпотенузи = сумі квадратів катетів) виходить, що
АВ²=ВК²+АК²
13²=ВК²+(21-ДН)²
ВК²=13²-(21-ДН)²
ВК²=169-(441-42ДН+ДН²)
ВК²=169-441+42ДН-ДН².
ВК²= -272+42ДН-ДН².


Розглянемо трикутник ДСН, він прямокутний, бо СН - це висота, а значит в цьому трикутнику ∠Н=90°.
СД - гіпотенуза, а СН та ДН  - це два катети.
По теоремі Піфагора ( квадрат гіпотенузи = сумі квадратів катетів) виходить, що
СД²=СН²+ДН²
20²=СН²+ДН²
СН²=20²-ДН²
СН²=400-ДН²

А оскільки ВК=СН, значить
-272+42ДН-ДН²=400-ДН²
42ДН-ДН²+ДН²=400+272
42ДН=672
ДН=672/42
ДН=16 см.

СН²=400-ДН²
СН²=400-16²
СН=√144
СН=12 см - висота трапеції.
Тепер значення висоти трапеції підставляємо  у формулу площі трапеції:
Р трапеції=СН*(ВС+АД)/2 = 12*(4+25)/2=12*29/2=174 см²

Відповідь: площа трапеції дорівнює 174 см²
4,5(70 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ