Это задачка на теорему Менелая. Если прямая пересекает AC в точке K, то BN*CK*AM/(NC*KA*MB) = 1; Если обозначить KC = p*AC; AM = q*BA; то 2*p*q/((1-p)*(1+q)) = 1; (1) Треугольник CNK по условию имеет площадь 1/5 от площади ABC; (я считаю, что площадь BNKA в 4 раза БОЛЬШЕ площади CNK. Если наоборот, то положение точки K не может соответствовать условию - она будет вне треугольника.) По условию NC = BC/3; поэтому расстояние от N до AC составляет 1/3 расстояния от B до AC. Отсюда (площадь CNK) = p*(1/3)*(площадь ABC); или p/3 = 1/5; p = 3/5; p/(1 - p) = 3/2; если подставить это в (1) q/(1 + q) = 1/3; q = 1/2; То есть AM = BA/2;
Доказательство теоремы Менелая необыкновенно простое. Если провести какую-то прямую вне треугольника, так, чтобы она пересекалась с прямой NM в точке D где-то вне треугольника, потом провести через три вершины прямые параллельно NM, которые пересекут эту прямую в точках A2; B2; C2; (ну, в смысле AA2 II BB2 II CC2 II MN, и напомню, точка К - тоже на MN) то
это всё доказательство. С учетом "знака", то есть "направления" отрезка, пишут обычно -1; тут при составлении равенств важно не запутаться в отрезках :)))
Уравнение касательной в точке (x1, y1) к эллипсу (x/a)^2 + (y/b)^2 = 1; x*x1/a^2 + y*y1/b^2 = 1; Вывести его проще простого - дифференциал в точке (x1, y1) равен 0, заменяется dx = x - x1; dy = y - y1; получается (x1/a^2)*(x - x1) + (y1/b^2)*(y - y1) = 0; откуда сразу получается нужное уравнение. Касательная в точке (x2, y2) на втором эллипсе (x/с)^2 + (y/d)^2 = 1; x*x2/c^2 + y*y2/d^2 = 1; Эти две прямые должны совпадать. То есть x2/c^2 = x1/a^2; y2/d^2 = y1/b^2; если переписать уравнения эллипсов так a^2*(x1/a^2)^2 + b^2*(y1/b^2)^2 = 1; c^2*(x2/c^2)^2 + d^2*(y2/d^2)^2 = 1; и обозначить u = (x1/a^2)^2 = (x2/c^2)^2; v = (y1/b^2)^2 = (y2/d^2)^2; то получается просто линейная система 2х2; a^2*u + b^2*v = 1; c^2*u + b^2*v = 1; У этой системы единственное решение (если есть, конечно, и не просто есть, а должно быть положительно определено, то есть u > 0; v > 0). Уравнения всех ЧЕТЫРЕХ общих касательных получаются потом перебором знаков перед корнями. То есть уравнения касательных будут +-x*√u +- y*√v = 1; Вот вся теория. Как это выглядит для этой задачки. a^2 = 6; b^2 = 1; c^2 = 4; d^2 = 9; 6*u + v = 1; 4*u + 9*v = 1; u = 4/25; √u = 2/5; v = 1/25; √v = 1/5; +-x*2 +- y = 5; вроде так. (ну, в смысле, 2x + y = 5; 2x - y = 5; -2x + y = 5; -2x - y = 5; ясно, что эти прямые образуют ромб). Решение не получилось бы, если бы эллипсы не пересекались.