Пирамида MABCD, основание - прямоугольник ABCD: AD=BC=18 см; AB=CD=10 см; O- точка пересечения диагоналей AС и BD, MO - высота пирамиды. Так как у прямоугольника диагонали равны и точкой пересечения делятся пополам, то OA = OB = OC = OD - это проекции боковых ребер на основание. Проекции наклонных равны, следовательно, наклонные тоже равны : AM = BM = CM = DM - боковые ребра пирамиды. Тогда ΔAMD = ΔBMC - по трём равным сторонам, ΔAMB = ΔDMC - по трём равным сторонам. Проведем KT║AD ⇒ OK=OT=AD/2 = 18/2 = 9 смΔMOT - прямоугольный, теорема ПифагораMT² = MO² OT² = 12² 9² = 144 81=225 = 15²MT = 15 см см²Проведем FG║DC ⇒ OG=OF=DC/2 = 10/2 = 5 смΔMOF - прямоугольный, теорема ПифагораMF² = MO² OF² = 12² 5² = 144 25 = 169 = 13²MF = 13 см см²Площадь боковой поверхности пирамиды см²Sбок = 384 см²Площадь основания см²Площадь полной поверхности пирамиды S = 384 180 = 564 см²
Объяснение:
Нехай трикутник АВС (кут С = 90градусів), кут В = 53 градусів, АВ = 12см
Проведемо з прямого кута С до гіпотенузи висоту СК.
Знайдемо Кут А, так як прямий кут це 90 градусів, то кут А буде дорівнювати:
кут С = 90градусів - 53 градусів =37 градусів.
Тепер дещо про синусів и косинусів
Синус кута - це відношення протилежного катета до гіпотенузи
Косинус кута - відношення прилеглого катета до гіпотенузи.
Звідси,
\cos B= \frac{BC}{AB} \\ BC=\cos B\cdot AB=\cos53\cdot 12\approx 7.2218
Тоді другий катет
AC= AB\cdot \sin 53а=12\cdot \sin53а\approx 9.5836
З прямотутного трикутника СКВ
CK=BC\cdot \sin 53а=7.2218*\sin53\approx 5.7676
Площа прямокутного трикутника обчислюється за формулою
S= \frac{AC+BC}{2} = \frac{7.2218+9.5836}{2} \approx 34.6054
Эратосфен - название географии
Птолемей - градусная сетка и первая карта Древнего мира
Аристотель - Земля - шар в центре Солнечной системы