Пусть будет треугольник АВС. Угол С : угол В : угол А = 3 : 2 : 1. Пусть угол А=х, тогда угол В=2х, угол С=3х. По теореме о сумме углов треугольника 3х+2х+х=180, откуда х=30 градусов, значит, угол А=30 градусов, угол В=60 градусов, а угол С = 90 градусов. Треугольник АВС прямоугольный. Пусть катет ВС=у, тогда гипотенуза АВ=2у (катет, лежащий против угла в 30 градусов, равен половине гипотенузы). По теореме Пифагора найдём катет АС:
Пусть будет треугольник АВС. Угол С : угол В : угол А = 3 : 2 : 1. Пусть угол А=х, тогда угол В=2х, угол С=3х. По теореме о сумме углов треугольника 3х+2х+х=180, откуда х=30 градусов, значит, угол А=30 градусов, угол В=60 градусов, а угол С = 90 градусов. Треугольник АВС прямоугольный. Пусть катет ВС=у, тогда гипотенуза АВ=2у (катет, лежащий против угла в 30 градусов, равен половине гипотенузы). По теореме Пифагора найдём катет АС:
По заданным углам получаем, что треугольник АВС - равносторонний с углами по 60 градусов.
Определяем углы треугольника АВД с учётом пересечения его диагональю АС в точке О
гол АОВ = 180-60-40 = 80°, угол АОД как смежный равен 180 - 80 = 100°.
Получаем, что треугольник АВД - равно бедренный с углами при основании по 40 градусов.
Отсюда получаем равенство сторон АД = АВ = ВС и диагонали АС.
Треугольник ДАС - равнобедренный с углом при вершине 40 градусов.
Тогда угол АДС = АСД = (180 - 40)/2 = 70 градусов.
ответ: угол ВДС = 70 - 40 = 30 градусов.