1) Четырехугольник является параллелограммом по определению, если у него противолежащие стороны параллельны, то есть лежат на параллельных прямых.
ABCD — параллелограмм, если
AB ∥ CD, AD ∥ BC.
Для доказательства параллельности прямых используют один из признаков параллельности прямых, чаще всего — через внутренние накрест лежащие углы. Для доказательства равенства внутренних накрест лежащих углов можно доказать равенство пары треугольников.
это могут быть пары треугольников
1) ABC и CDA,
2) BCD и DAB,
3) AOD и COB,
4) AOB и COD.
2) Четырехугольник является параллелограммом, если у него диагонали в точке пересечения делятся пополам.
Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AO=OC, BO=OD.
3) Четырехугольник является параллелограммом, если у него противолежащие стороны параллельны и равны.
Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AD=BC и AD ∥ BC (либо AB=CD и AB ∥ CD).
Для этого можно доказать равенство одной из тех же пар треугольников.
4) Четырехугольник — параллелограмм, если у него противоположные стороны попарно равны.
Чтобы воспользоваться этим признаком параллелограмма, нужно предварительно доказать, что AD=BC и AB=CD.
Для этого доказываем равенство треугольников ABC и CDA или BCD и DAB.
Это — четыре основных доказательства того, что некоторый четырехугольник — параллелограмм. Существуют и другие доказательства. Например, четырехугольник — параллелограмм, если сумма квадратов его диагоналей равна сумме квадрату сторон. Но, чтобы воспользоваться дополнительными признаками, надо их сначала доказать.
Доказательство с векторов или координат также опирается на определение и признаки параллелограмма, но проводится иначе. Об этом речь будет вестись в темах, посвященных векторам и декартовым координатам.
Площадь треугольника, вписанного в окружность, равна S = (a b c) / (4 R) также площадь равна S = 1/2 c h. Следовательно, (a b c) / (4 R) = 1/2 c h Так как треугольник равнобедренный, a = b = 5, R = 5; c - основание тр-ка.Сократим уравнение на величину "с" и подставим значения:(5*5) / (4*5) = 1/2 * h5/4 = 1/2 hh = 5/2 – высота треугольникаПо теореме Пифагора половина основания равна:1/2 с = √52 - (5/2)2 = √75/4 = √3*25/4 = 5/2 √3,Полное основание равно 2 * 5/2 √3 = 5√3Площадь треугольника будет равна:S = 1/2 * 5√3 * 5/2 = 25/4 √3
АВС - треугольник С =90 град СК - медиана (АК+КВ) уг КСВ : уг. АСК = 1 : 2 Обозначим через х коэфф.пропорции и составим уравение х+2х=90 3х=90 х=30 Следовательно, КСВ=30 град АСК= 60 град Наименьшая сторона лежим против меньшего угла. Рассмотрим треугольник СКМ (КМ перпендикулярна СВ и делит СВ пополам, то есть является средней линией треугольника. Треугольник КСМ прямоугольный. В прямоугольном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы. СК - гипотенуза, СК=10 см (по условию). Значит КМ=5 см Медиана прямоугольного треугольника, проведенная из вершины прямого угла равна половине гипотенузы. Значит, гипотенуза АВ= 2*10=20 см
ABCD — параллелограмм, если
AB ∥ CD, AD ∥ BC.
Для доказательства параллельности прямых используют один из признаков параллельности прямых, чаще всего — через внутренние накрест лежащие углы. Для доказательства равенства внутренних накрест лежащих углов можно доказать равенство пары треугольников.
это могут быть пары треугольников
1) ABC и CDA,
2) BCD и DAB,
3) AOD и COB,
4) AOB и COD.
2) Четырехугольник является параллелограммом, если у него диагонали в точке пересечения делятся пополам.
Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AO=OC, BO=OD.
3) Четырехугольник является параллелограммом, если у него противолежащие стороны параллельны и равны.
Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AD=BC и AD ∥ BC (либо AB=CD и AB ∥ CD).
Для этого можно доказать равенство одной из тех же пар треугольников.
4) Четырехугольник — параллелограмм, если у него противоположные стороны попарно равны.
Чтобы воспользоваться этим признаком параллелограмма, нужно предварительно доказать, что AD=BC и AB=CD.
Для этого доказываем равенство треугольников ABC и CDA или BCD и DAB.
Это — четыре основных доказательства того, что некоторый четырехугольник — параллелограмм. Существуют и другие доказательства. Например, четырехугольник — параллелограмм, если сумма квадратов его диагоналей равна сумме квадрату сторон. Но, чтобы воспользоваться дополнительными признаками, надо их сначала доказать.
Доказательство с векторов или координат также опирается на определение и признаки параллелограмма, но проводится иначе. Об этом речь будет вестись в темах, посвященных векторам и декартовым координатам.