Боковое ребро правильной шестиугольной пирамиды равно 12 и наклонено к плоскости основания под углом 60°. найдите сторону основания пирамиды. найдите площадь полной поверхности пирамиды
Нам дан один из внешних углов равнобедренного треугольника. У равнобедренного треугольника углы при основании равны.
Значит возможны два варианта решения:
1. Если дан внешний угол при основании, то внутренний, смежный с ним, равен 180° - 115° = 65° (сумма смежных углов равна 180°).
Тогда угол при вершине треугольника равен 180° - 2·65° = 50° (по сумме внутренних углов треугольника, равной 180°).
ответ: 65°, 65°, 50°.
2. Если дан внешний угол при вершине, то внутренний, смежный с ним, равен 180° - 115° = 65° (сумма смежных углов равна 180°).
Внешний угол треугольника равен сумме двух внутренних (в нашем случае равных), не смежных с ним углов. Следовательно, углы при основании такого треугольника равны 115°:2 = 57,5°.
Трапеция АВСД, АВ=СД, Р - точка касания окружности на АВ, Н - точка на ВС, Т- точка на СД, М-точка на АД, проводим диаметр НМ = радиус*2=3*2=6 = высоте трапеции, ВС=высота/2=6/2=3, АМ=АР - как касательные проведенные из одной точки = МД=ДТ, ВН=НС=3/2=1,5 , ВН=РВ - как касательные проведенные из одной точки =НС=СТ=1,5, проводим высоты ВЛ=СК=6 на АД, треугольники АВЛ и КСД равны по гипотенузе (АВ=СД) и катету (СК=ВЛ), ВН=НС=ЛМ=МК=1,5 АЛ=КД=х, АМ=АЛ+ЛМ=х+1,5=АР, АВ=АР+РВ=(х+1,5)+1,5=х+3 ВЛ в квадрате = АВ в квадрате - АЛ в квадрате 36 = х в квадрате + 6х + 9 - х в квадрате х=4,5= АЛ=КД, АД=4,5+1,5+4,5+1,5=12 Площадь = (ВС+АД)/2 * ВЛ= (3+12)/2 * 6 = 45
1. 65°, 65°, 50°.
2. 57,5°; 57,5°; 65°.
Объяснение:
Нам дан один из внешних углов равнобедренного треугольника. У равнобедренного треугольника углы при основании равны.
Значит возможны два варианта решения:
1. Если дан внешний угол при основании, то внутренний, смежный с ним, равен 180° - 115° = 65° (сумма смежных углов равна 180°).
Тогда угол при вершине треугольника равен 180° - 2·65° = 50° (по сумме внутренних углов треугольника, равной 180°).
ответ: 65°, 65°, 50°.
2. Если дан внешний угол при вершине, то внутренний, смежный с ним, равен 180° - 115° = 65° (сумма смежных углов равна 180°).
Внешний угол треугольника равен сумме двух внутренних (в нашем случае равных), не смежных с ним углов. Следовательно, углы при основании такого треугольника равны 115°:2 = 57,5°.
ответ: 57,5°; 57,5°; 65°.