AB = CD так как трапеция равнобедренная, ∠ВАD = ∠CDA как углы при основании равнобедренной трапеции, AD - общая сторона для треугольников BAD и CDA, ⇒ ΔBAD = ΔCDA по двум сторонам и углу между ними.
Значит ∠CAD = ∠BDA. Тогда ΔOAD равнобедренный, прямоугольный, и его высота (ОН) является и медианой, проведенной к гипотенузе, значит, равна ее половине: ОН = AD/2
ΔВОС подобен ΔDOA по двум углам, значит и ОК = ВС/2
КН = AD/2 + BC/2 = (AD + BC)/2 ⇒ высота равна средней линии.
1. а) Сумма внутренних углов треугольника равна 180°. Значит третий угол треугольника равен 180°-70°--55°=55°. В треугольнике два угла равны, значит треугольник равнобедренный с основанием ВС, так как равные углы прилежат к стороне ВС. б) Так как ВМ -перпендикуляр к АС, то треугольники АВМ и СВМ - прямоугольные. Сумма острых углов прямоугольного треугольника равна 90°, значит <АВМ=90°-70°=20°. <СВМ=90°-55°=35°. 2. а) Треугольники ВСО и ВСD равны по двум сторонам и углу между ними (АО=ОВ и СО=OD - дано, а <АОС =<BOD - вертикальные). Что и требовалось доказать. б) В равных треугольниках против равных сторон лежат равные углы. Следовательно, <ОАС=<OBD. Угол OBD=180°-20°-115°=45°. ответ: <ОАС=45°.