Для нахождения вероятности этого надо найти соотношение площадей круга и шестиугольника. Площадь круга, как известно: S = П*r^2, где П=3,14, r - радиус. Теперь найдём площадь вписанного правильного щестиугольника (нарисуйте иллюстрацию, так будет понятнее). Она равна шести площадям треугольника, образованного стороной шестиугольника и двумя радиусами. Так как угол этого треугольника, лежащий у центра окружности, равен 360 / 6 = 60, то этот треугольник вообще равносторонний и его сторона равна r. Найти площадь его можно по формуле Герона, если проходили (для неё достаточно только трёх сторон), или более классическим путём - как произведение половины основания на высоту. Основание r, высота легко выводится тригонометрически: для равностороннего треугольника высота равна r*cos(60/2) = / 2 * r Отсюда площадь треугольника: 1/2 * r * / 2 * r = / 4* r^2 Площадь шестиугольника равна: 6 * / 4* r^2 = 1,5 * * r^2 Теперь делим её на площадь круга: 1,5 * * r^2 / (П*r^2) = 1,5 * / П Численно это примерно равно 0,83 или 83%.
Наверное найти расстояние от центра окружности до точки Е.
Нетрудно догадаться, что АЕ=8см, а ЕВ=7см. Из центра окружности опускаем перпендикуляр на хорду. (обознацим центр окружности О, а пересечение хорды и перпендикуляра С) . Тогда перпендикуляр делит хорду пополам, а значит АС=7,5 см. Точку О соединим с точкой А. ОА=9см. Треугольник АОС прямоугольный. Поэтому по теореме Пифагора находим ОС. Овет полчается корень из 17. Около 4,1231. Теперь возьмём треугольник ОСЕ. Он тоже прямоугольный. СЕ=0,5см, ОС нам тоже известно, поэтому по теореме Пифагора находим ОЕ.
№1 1) Р=6+6+4+4 = 20 так как дан параллелограмм то стороны попарно равны 2) Р = 11,5+11,5 + 7+ 7 = 23 +14 = 37
№2 180 - 42 = 138 так как сумма двух углов прилежащих к одной стороне равна 180 Так как дан параллелограмм то углы попарно равны, то есть два угла равны 42 и два угла равны 138
№3 АВ + ВС = 12 АВ : ВС = 1:2 => BC = 2AB => 2AB + AB = 12 => AB = 4 => BC = 8 так как дан параллелограмм то стороны попарно равны => BC = AD =8 AB=CD = 4 AB:BC = 3:2 = > AB = 1,5BC => 2,5BC = 12 => BC = AD = 4,8 => AB = CD = 7,2
S = П*r^2, где П=3,14, r - радиус.
Теперь найдём площадь вписанного правильного щестиугольника (нарисуйте иллюстрацию, так будет понятнее). Она равна шести площадям треугольника, образованного стороной шестиугольника и двумя радиусами. Так как угол этого треугольника, лежащий у центра окружности, равен 360 / 6 = 60, то этот треугольник вообще равносторонний и его сторона равна r. Найти площадь его можно по формуле Герона, если проходили (для неё достаточно только трёх сторон), или более классическим путём - как произведение половины основания на высоту. Основание r, высота легко выводится тригонометрически: для равностороннего треугольника высота равна r*cos(60/2) =
Отсюда площадь треугольника: 1/2 * r *
Площадь шестиугольника равна: 6 *
Теперь делим её на площадь круга:
1,5 *
Численно это примерно равно 0,83 или 83%.